Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Взаимодействие тел в эфир­ном пространстве обусловливает им равное и про­тивоположное противодействие. 3 страница



Читайте также:
  1. 1 страница
  2. 1 страница
  3. 1 страница
  4. 1 страница
  5. 1 страница
  6. 1 страница
  7. 1 страница

Движение электрона по орбите принципиально не отличается от движения планеты. Поэтому плоская траектория движения электрона в пространстве и временные особенности его движения полностью определяются функцией g = f2 (e,φ) = fз (е,τ), где е – эксцентриситет электронной орбиты.

Отсюда следует вывод принципиальной важности: процессы распространения различных видов энергий в пространстве и во времени являются физически подобными.

Этим объясняется возможность и законность исполь­зования в классической механике метода обобщенных потенциалов и обобщенных координат.

Далее, если на графики функций r ' = f1 (e,φ), g = f2 (e,φ), τ' = f3 (e,φ), построенные для какой-либо планеты Солнечной системы, нанести графики функций ri = f1 (ei), gi = f2 (ei), i, = f3(е,φ), построенные для электронов, вращающихся на стационарных орбитах атомов химических веществ, составляющих таблицу Д. И. Менделеева (из которых состоит данная планета), то окажется, что эти графики совершенно однотипны. Это означает, что независимо от положения во времени и в пространстве, планета и электроны атомов постоянно пребывают в состоянии пространственно-временных соответ-ствий друг с другом. При этом часть электронов атомов (те из них, эксцентриситеты орбит которых близки по значению эксцентриситету орбиты самой планеты) находятся с этой планетой в состоянии пространственно-временного резонанса (т.е. являются энергети- чески скомпенсированными). Эти электроны ответственны за создание сил гравитационного происхождения на самой планете. Другая часть орбитальных электронов тех же самых атомов остается энергетически нескомпенсированной, образуя внутри и вокруг любого тела и самой планеты энергетические поля различной природы (тепловое, электромагнитное, химическое, гравитационное), то есть находящийся в беспрестанном движении эфир.

В связи с этим интересно отметить, что в геологии с некоторых пор существует классификация, разделяю­щая все химические элементы таблицы Д.И. Менделеева на четыре группы (отвечающие за степени дифференциации их по глубинам залегания в Земле): центро­бежные, центростремительные иокеанического происхождения. Указанная классифи­кация имеет важное практическое значение при определении месторождений тех или иных полезных ископаемых [58] и косвенным образом подтверждает справедливость изложенного.

Физическое подобие равносильно возможности описания процессов различной природы с помощью универсальных уравнений, представленных в обобщен­ных потенциалах и в обобщенных координатах, в которые лишь следует подставить соответствующие рассматриваемому типу взаимодействия значения физических величин. Поскольку во все полученные соотношения входит пространственно-временной параметр целесообразно остановиться на этом факте подробнее.

γ = 2 Е/П = (1+ 2 e∙cosφ + е2) / (1 + e∙cosφ) = f2 (е,φ) = f3 (r,τ) (А)

Из физики [53,57] известно, что отношение кине­тической и потенциальной энергии тела определяет форму его траектории в пространстве. При этом оказывается, что для замкнутых эллиптических траекторий полная энергия W < 0, для разомкнутых параболических W = 0и для гиперболических W > 0. Из геометрии [54] плоских конических сечений (эллипс, парабола, гипербола), кроме того, известно, что вид конического сечения всецело определяется величиной эксцентриситета е: для эллиптических сечений 0 < е < 1, (0 < g < 2); для параболических е = 1, (g = 2) и для гиперболических е > 1, (g > 2). Таким образом, форма траектории тела в пространстве может быть полностью определена либо знаком и величиной полной энергии W, либо величиной ее эксцентриситета е, либо величиной параметра γ по соотношению (А).

Для замкнутых эллиптических траекторий при нахождении тела (планеты, электрона в атоме) в перигелии орбиты (φ = 0 °)параметр g, согласно формуле (А), принимает максимальное значение: gр = 1 + е, а в случае же нахождения тела в афелии орбиты (φ =180°) этот параметр принимает минимальное значение: gа = 1 – е. Для Земли (е = 0,017), gр = 1,017 и gа = 0,983. Таким образом, погрешность, вносимая неучетом параметра g, в равенстве (3.34) составляет для Земли всего ±1,7% (см. рис. 23). Этим во многом объясняется тот факт, что второй и третий законы Ньютона, не содержащие этого параметра, оказываются достаточно точными для земных условий. Однако уже для таких планет, как Меркурий (е = 0,2066) и Плутон (е = 0,2530) эти законы оказываются ограниченно верными. И совсем неприменимыми они становятся для описания движения электронов на орбитах атомов (где реализуется диапазон 0< g <2), а также для тел, движущихся по параболическим (g = 2) и гипербо­лическим (g > 2) траекториям. Среднее же (для эллипти­ческих орбит) значение параметра g равно gср = (gа + gр) / 2= 1. Амплитуда кривой g = f2 (e,φ)на рис. 23 равна, таким образом, gа – gр = 2 е.

Здесь следует обратить внимание на следующие принципиально важные обстоятельства.

Согласно соотношению (А), параметр g = f2 (e,φ) = f3 (r',τ')уже для электронных орбит атомов различных химических веществ приобретает смысл регулируемого параметра, способного при искусственном управлении им изменять как свою абсолютную величину, так и знак (вследствие периодичности функции cosφ). Очевидно, что это справедливо и для более глубоких уровней строения вещества, где происходят аналогичные беспрестанные движения соответствующих микротел вокруг притягивающих центров.

При е = 1, γмах=gтин = 0.Это означает, что при достижении величины эксцентриситета е = 1 происходит разрыв орбиты и она превращается в разомкнутую параболическую траекторию, характе­ризуемую величиной полной энергии W = 0. Последнее свидетельствует о величине минимально необходимой полной энергии, требуемой для того, чтобы материальное тело начало движение по параболической траектории, при котором реализуется наиболее экономичный режим его движения. Согласно соотно­шениям (3.24) и (3.25) при этом Е – П, т.е. происходит полная взаимопревращаемость кинетической и потенциальной энергии. Именно так движется фотон, который излучается или поглощается в период перехода электронов с одной на другую орбиту атома. При этом полная энергия фотона оказывается равной:

W = 2 Е = 2 П = тс2 = 2 hω,

где h – постоянная Планка, ω – круговая частота.

Эта формула в части W = тс2 находится в полном соответствии с формулой А. Эйнштейна для полной энергии фотона, а в части W = 2hω в полном проти­воречии с формулой корпускулярно-волновой теории А. Эйнштейна для полной энергии фотона [59] где, как известно, W = hω.

Если е = 0(т.е. g = 1), движение любого материального тела должно было бы происходить по идеальной круговой траектории, а при е = ¥ (g = ¥) по идеальной прямолинейной траектории. Оба эти предельные случая соответствуют равномерному движению тела постоянной массы без сопро­тивления окружающей среды, т.е. движения тела с постоянной скоростью в условиях абсолютного вакуума, чего в Природе не наблюдается. Это позволяет сделать заключение о том, что параметр ¥ имеет следующие допустимые пределы изменения:

0 < γ < ∞.

Согласно соотношению (3.23) это означает, что никакое тело не может пребывать в состоянии абсолютного покоя. Тот факт что g ≠ ¥ означает, кроме того, что принцип равномерного прямоли­ нейного движения, постулируемый первым, законом И. Ньютона, а также являющийся основой теории относительности А. Эйнштейна и ее математического аппарата (линейных преобразований Э. Лоренца), ошибочен. Но в таком случае закономерен вопрос: в чем должна заключаться истинная роль первого закона механики?

Вводя чрезвычайно важные объективные и субъ­ективные принципы, перечисленные в начале этой главы, отметим, что указанный закон, во-первых, оказался неполным (ибо не учитывает случая идеаль­ного равномерного кругового движения тела), а во-вторых, является фактически невыполнимым во всех своих положениях. Эта парадоксальная ситуация может быть разрешена, если условиться, что первый закон механики должен играть роль правила, вводящего естественные ограничения на возможность постро­ения какой-либо физической теории, основанной на принципах, противоречащих принципу существо­вания находящейся в вечном движении и взаимо­действии материи как вещества.

Если согласиться с предложенным условием, то первый закон новой механики может быть изложен в следующей редакции.

Всякое тело продолжает удерживаться в состоя­нии покоя, равномерного кругового или равномерного прямолинейного движения, пока и поскольку оно не понуждается приложенными силами изменить это состояние.

При этом необходимо помнить о том, что любая физическая теория, основанная на принципах покоя, равномерного кругового, либо равномерного прямо­линейного движения (т.е. не учитывающая взаимо­действия тел с окружающей средой), обречена на провал.

Подводя итоги изложенного, особенно важно отме­тить, что проведенный анализ выявил существование равенства (3.34), находящегося в явных формальных противоречиях со вторым и третьим законами классической механики, не содержащими параметра g.

3.3. Гравитационная деформация тел

 

В статической аксиоматике Евклидова пространства, все области последнего обладают одинаковой мерно­стью, и перенос измерительного инструмента (напри­мер, жесткого метра) из одной области пространства в другую по определению не изменяет его геометрических размеров. Эта математическая аксиоматика привнесена без изме­нений в механику Ньютона и использована для описа­ния взаимодействия тел в гравитационном поле. Такой подход неявно постулирует изотропность пространства, отсутствие воздействия внешнего гравитационного поля на находящиеся в нем тела, а, следовательно, и отсутст­вие влияния напряженности внешнего гравиполя на па­раметры тела. Таким образом, в классической механике постулируется, что тело при перемещении во внешнем гравиполе не испытывает воздействия со стороны по­следнего и не деформирует, т.е. остается тождественным самому себе. Поэтому как система тело либо не взаимо­действует с внешним гравиполем, либо это взаимодей­ствие не является физическим. Оставим последнее предположение без внимания как не имеющее отноше­ния к физике. Рассмотрим притяжение тел как следствие взаимодействия между системами свойств притягиваемых тел.

Надо отметить, что механика Ньютона отождествляет тело с гравитирующей точкой и потому все описание притяжения между телами проводится как взаимодейст­вие гравитирующих центров — точек. Поскольку гравитирующие центры — абстракция, а точка — геометриче­ская фигура, не имеющая объема и не обладающая физическими свойствами, то и никаких деформаций с ней происходить не может.

Однако тела — не точки. Они, как системы, образуют свое пространство, поверхность которого связана как со свойствами самого тела, так и со свойствами внешнего пространства. И если в системе тела или во внешнем пространстве происходит изменение количественной величины некоторых свойств (например, напряженности внешнего гравиполя), то эти изменения должны отра­жаться и на величинах свойств самого тела. В частности, следует ожидать деформации геометрических парамет­ров (объема) тела. Это обстоятельство является важ­нейшим для понимания сущности гравитационного взаимодействия.

Гравитирующие тела достаточно условно можно пола­гать точками только тогда, когда напряженность грави­поля в их нейтральной зоне на три-четыре порядка меньше, чем на поверхности. Во всех остальных случаях рассмотрения гравитационного взаимодействия отсчет расстояния между телами производится не от их цен­тров, а от поверхности. Именно такой подход к описа­нию гравитационного взаимодействия проводится в рус­ской механике. И именно он приводит к пониманию сущности гравитационной деформации тел. Рассмотрим его.

Тело, находящееся в пространстве над поверхностью, взаимодействует с внешним гравиполем и потому при­тягивается Землей. В этом взаимодействии участвуют все свойства тел, однако в закон притяжения входят только массы тела и Земли, расстояние между телами, гравитационная «постоянная» и сила притяжения между ними. Особо подчеркну то обстоятельство, что само притягиваемое тело в законе представлено только «не­изменной» массой. Другие свойства данного тела в по­следующих расчетах явно не участвуют ни во взаимо­связи, ни по отдельности.

Можно предложить множество экспериментов, под­тверждающих наличие гравидеформации тел при изме­нении напряженности внешнего гравиполя. Некоторые из них, связанные с перемещением мерного инструмента по высоте над поверхностью, уже приводились ранее. Как отмечалось, измерительные инструменты из раз­личных материалов, отрихтованные на мерной миле в долине и перенесенные на такую же милю на плато, бу­дут давать различное значение ее длины. Данное разли­чие является следствием того, что внутреннее строение, химический состав тела и его свойства влияют на харак­тер деформации при изменении напряженности внешне­го гравиполя. А это означает, что гравидеформация вы­зывает изменение не только линейных параметров тел, но и их массы и веса при статическом изменении поло­жения тела по высоте, а при динамическом — различные ускорения при падении. В последнем случае сопротив­ление внутренних сил тела грависжатию вызывает возникновение внешних тормозящих воздействий, обу­словливающих различное ускорение «свободно» падаю­щих тел.

Можно проделать более простой эксперимент. Доста­точно уравновесить на рычажных весах с разрешающей способностью ~10-7 два тела из различных материалов (например, вода и свинец) на одной высоте и, подняв их на высоту 1 км, убедиться, что достигнутое равновесие на высоте нарушается больше, чем это следует из классической механики. Не корректируя показания весов, опустить их вместе с грузами на прежний уровень и по­лучить начальное равновесие рычагов. Это и будет сви­детельством изменения веса тел по высоте.

Эти достаточно простые и относительно дешевые экс­перименты не проводились не из-за технологических сложностей, а потому, что противоречили постулату изотропности пространства и принципу эквивалентности. Согласно последнему, по К. Уиллу, «все тела в гра­витационном поле падают с одним и тем же ускорением вне зависимости от их массы или внутреннего строения» [11].

В конце 1986 г. группа физиков во главе с Э. Фишбахом опубликовала в журнале Phys.Rev.Letters гипотезу о возможном падении тел в вакууме с различным ускоре­нием. Гипотеза противоречила основам классической механики (все тела, независимо от своих свойств, пада­ют в вакууме с одинаковым ускорением) и опиралась на ряд экспериментов группы австралийских геофизиков во главе с Ф. Стейси по измерению значения гравитацион­ной «постоянной» G в глубоких шахтах. При опускании приборов в них фиксируется постоянное возрастание силы притяжения. Аналогичный результат, был получен при опускании гравиметров в полуторакилометровую скважину, пробуренную во льдах Гренландии, и при подъеме на 600 метровую телевизионную башню в шта­те Северная Каролина. Более того, проведя тщательный анализ результатов классических эксперимен-тов Г. Этвеша, группа Фишбаха обнаружила в них подтвержде­ние своей гипотезы. Таким образом, гипотеза имела дос­таточно доказательное обоснование и претендовала стать настоящей научной сенсацией.

Объясняя эти эксперименты, Фишбах выдвинул пред­положение о существовании в природе пятой силы — си­лы отталкивания, с радиусом действия в несколько сот метров и примерно на два порядка более слабой, чем сила гравитационного притяжения. Предполагалось, что величина пятой силы не зависит от массы, а определяется общим барионным числом на единицу массы (обусловливается чис­лом протонов и нейтронов в теле). Основой существова­ния сил отталкивания между одинаковыми телами разного химического состава становится отсутствие пропорциональности между барионным зарядом и мас­сой тел.

Гипотеза вызвала широкую дискуссию по проблеме пятой силы и стремление эмпирического доказательства ее существования. В течение ряда лет было проведено несколько десятков экспериментов по проверке гипоте­зы и предложены различные физические обоснования возможности существования этой силы. Тем не менее, однозначного доказательства реальности пятой силы получено не было. Часть экспериментов подтверждала наличие такой силы, но большая часть ей противоречи­ла.

Международный симпозиум, состоявшийся в августе 1988 г. в Австралии по проблеме пятой силы и выработке теоретического и экспериментального, подхода к это­му явлению оказался безрезультатным и ограничился рекомендацией о необходимости дальнейшего изучения данного явления. Отсутствие однозначного эмпирического доказательства существования пятой силы приту­шило интерес к данной проблеме, и к настоящему вре­мени упоминания о ней появляются в научных публика­циях от случая к случаю. Тем не менее, проблема остается. Чем же она вызвана?

Как известно, ньютоновская механика не предполагает изменения количественной величины свойств тела, на­ходящегося в гравитационном поле, в результате изме­нения напряженности этого поля. Следовательно, тела лежащие на поверхности Земли, остаются тождествен­ными самим себе и при подъеме их на некоторую высо­ту над поверхностью. Тождественность тел при переме­щении в гравитационном поле обусловливает постоян­ство ускорения при их падении в вакууме (в эфире).

Постулирование тождественности тел с изменением внешнего гравитационного поля физически означает, что гравиполе данных тел не взаимодействует с внеш­ним гравиполем, и поэтому становятся необъяснимыми как причины, вызывающие их падение, так и «переливы» потенциальной и кинетической энергий с изменением высоты.

Тем не менее, тело, находящееся на поверхности, сво­им гравитационным полем взаимодействует с гравипо­лем Земли и только поэтому притягивается ею. По­скольку внешние и внутренние свойства тела взаимосвя­заны, то изменение любого из них вызывает соответ­ствующее явное или неявное изменение всех остальных свойств (например, напряженности собственного грави­поля, массы, геометрических размеров и т.д.) [5].

Поэтому при движении тела вверх или вниз относи­тельно поверхности явственно изменяется величина двух параметров: напряженность внешнего гравиполя g и расстояние R между центрами масс тел. А так как на­пряженность гравиполя тела g1, связана с напряженно­стью внешнего гравиполя g0, то изменение последнего должно вызывать соответствующее изменение напря­женности гравиполя тела, а вместе с ним и всех осталь­ных свойств. Поскольку произведение напряженности гравиполя g 1 на квадрат радиуса r есть инвариант, то из­менение напряженности гравиполя тела при подъеме вызывает пропорциональное изменение его геометриче­ских параметров. То есть, изменение напряженности внешнего гравиполя сопровождается гравита-ционной деформацией тела. А это главное для понимания и объ­яснения гравитационных взаимодействий.

Рассмотрим пример [44]:

Рис. 24.

Предположим, что на поверх­ности по отвесу возведена баш­ня высотой h = R (где R – ради­ус Земли) и длиной основания l, а верхней площадки l1 (рис.24). На полу башни лежит тело – шар, радиусом r. Поднимем этот шар на верхнюю площадку и определим его радиус. По­верхностная напряженность гравиполя тела на полу g1 гра­виполя Земли gо. Напряжен­ность гравиполя тела на верх­ней площадке g2, Земли g. Если в системе тело-Земля на­пряженность внешнего грави­поля gо пропорциональна напряженности гравиполя тела g1 то с подъемом шара на площадку напряженность по­верхности его гравиполя меняется пропорционально на­пряженности гравиполя Земли, а вместе с ней меняется и радиус сферы r1. Зависимость напряженностей опре­деляется уравнением:

g1/go = g2/g. (3.35)

Напряженность внешнего гравиполя g на верхней площадке башни находим из уравнения:

g = A/ (h + R) 2 = gо/ 4, A = R2gо. (3.36)

Подставляем в уравнение (3.36) значение g из (3.35) и находим g2:

g2 = g1/ 4. (3.37)

Напряженность гравиполя сферы связана с радиусом инвариантом g1r2 = const, и количественная величина инварианта не изменяется с подъемом тела на верхнюю площадку. Поэтому имеем:

g1r2 = g2r12 (3.38)

Подставляя в (3.38) значение g2 из (3.37), получаем ве­личину радиуса шара r1 поднятого на верхнюю площад­ку башни:

r1 = 2 r. (3.39)

Равенство (3.39) показывает, что с подъемом тела (сферы) на высоту его геометрические размеры возрас­тают пропорционально изменению напряженности на­ружного гравиполя, а физические параметры остаются постоянными. Физический жесткий метр на полу башни отло­жится столько же раз, сколько и на верхней площадке. Поэтому длина стороны пола башни l физически равна длине стороны верхней площадки l1:

l = l1 – физически,

а геометрические размеры их различны и l ≠ l1:

l =1/2 l.

Все тела, как и жесткие измерительные стержни, с возрастанием напряженности внешнего гравиполя «гео­метрически» сжимаются (деформируют), а при уменьшении – расширя­ются. (Это и есть гравитационный аналог температурно­го эффекта, описанного А. Пуанкаре.) Геометрические размеры тел определяются их местом во внешнем грави­тационном поле. Изменение геометрических размеров и есть гравитационная деформация тела. Последняя оп­ределяет количественную величину взаимоперехода по­тенциальной и кинетической энергии при подъеме или опускании тела во внешнем гравиполе. Именно гравита­ционная деформация обуславливает режим «свободно­го» падения тел в эфире.

Рассмотрим, учитывая гравитационную деформацию тел, результаты некоторых экспериментов, необъясни­мых с позиций ньютоновской механики. Их можно достаточно условно разделить на две группы: эксперимен­ты в статической и динамической постановке. Еще раз отмечу, что и классическая механика, и теория от­носительности, и другие гравитационные гипотезы по­стулируют тождественный характер поведения тел приэтих качественно разных взаимодействиях.

Различие статической и динамической природы грави­тационных взаимодействий обусловлено дихотомией понятия «ускорение свободного падения» g. С одной стороны, оно является именно ускорением тел в падении (в динамике), с другой — выполняет функции напряжен­ности гравиполей тел (в статике). Поэтому при статиче­ской постановке эксперимента более сказывается уча­стие во взаимодействии свойств, связанных со сжимаемостью тел в условиях, когда время и скорость сжатия не существенны. И потому состояние поднятых (опущенных) относительно своего первоначального по­ложения тел определяется изменением плотности ρ и сжимаемости х.

При «свободном» падении тел в возрастающем внешнем гравитационном поле (динамическое взаимодействие) сопротив-ление сжатию обусловливает движение их с различным ускорением. В свою очередь и скорость гравитационного сжатия в падении и величина де­формации определяются физическими и химическими свойствами тел.

Для определения деформации поднимаемых (опускае­мых) над поверхностью Земли тел можно предложить расчетную формулу, выведенную Д.В. Черняевым [43]:

z = 9 h2 (l/ x2ρ2 1/ x1ρ1)/ gR2, (3.40)

где ∆ z – расчетное расстояние между телами, брошен­ными с высоты h, g – напряженность гравитационного поля (ускорение свободного падения), R – радиус Земли, ρ1, ρ2 плотности опущенных тел, ѕ12 коэффициенты сжимаемости опущенных тел.

Формула (3.40) позволяет определить расстояние z между двумя как бы одновременно опущенными телами после опускания их с высоты h = 1 км и в пересчете этой разницы на собственный вес тела на новой высоте. Рас­чет по (3.40) производился для 6 типов материалов, имеющих одинаковый первоначальный вес, равный Р = 2,13865∙104 г, и, как видно из табл. 8, на новой высоте все тела имеют уже различный вес. По закону Ньютона вес всех опущенных с одной высоты тел должен оста­ваться одинаковым и равным 2,14032113∙104 г.

Таблица 8
Материалы Х, 10-12 ρ, г/см3 Рп, 104 г

смс/г

1 Стекло 1,3 2,6 2,14048928

2 Сталь 0,6 7,7 2,14048913

3 Медь 0,7 8,93 2,14048902

4 Свинец 2,3 11,34 2,14048879

5 Платина 0,36 21,4 2,14048896

6 Уран 1,8 19,05 2,14048877

Коэффициенты сжимаемости Х достаточно приблизи­тельны, поскольку свойство сжимаемости тел для одно­го и того же материала варьируется в широких пределах (до порядка) в зависимости от технологии получения образца, его химической чистоты, кристаллической структуры и т.д. А поэтому при подготовке подобных тел к эксперименту необходимо фиксировать параметры каждого образца на высоте проведения эксперимента.

В статической постановке проводились эксперименты Р. Этвеша, Дж. Эйри, С. Стабса, Э. Адельберга, П. Бойнтона, П. Тибергера и большинство других. В этих экспериментах отсутствуют свободно падающие тела и используются различные конструкции крутиль­ных весов или гравиметров.

Наиболее известен в статической постановке классический эксперимент Р. Этвеша, проведенный более 80 лет назад. Попытка двух исследовательских групп Бойнтона, а также Стабса и Адельберга повторить экспери­менты Этвеша с применением пробных тел из других материалов не привели к получению аналогичных ре­зультатов.

В эксперименте Этвеш использовал крутильные весы, подвешенные на упругой нити (рис. 25). На коромысле весов закреплялись одинаковые по массе m пары пробных тел из различных материалов (всего 13 пар), поме­щаемые в эксперименте с одной стороны от массивных тел М. Если сила притяжения пробных тел к массивным будет неодинакова, то коромысло повернется на некоторый угол и приборы зафиксируют этот поворот [5]. Результаты эксперимента, проделанного с точностью до 10-9-10-10, были интерпретированы Этвешем в отчете как доказательство того, что ускорение свободного па­дения для любых тел с данной точ­ностью постоянно. Однако по отчету в 9-м знаке обнаруживаются заметные статические различия в ускорении 10 пар пробных тел. Именно эти различия и использовал


Дата добавления: 2015-07-11; просмотров: 69 | Нарушение авторских прав






mybiblioteka.su - 2015-2024 год. (0.018 сек.)