Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Формула Ньютона-Лейбница



Читайте также:
  1. V2: Формула Эйлера для критической силы сжатого стержня и пределы ее применимости
  2. АБСОЛЮТНАЯ И ОТНОСИТЕЛЬНАЯ АДРЕСАЦИЯ ПРИ РАБОТЕ С ФОРМУЛАМИ
  3. Б. Понятие о классической статистике. Скорости молекул. Распределение молекул по скоростям и энергиям. Барометрическая формула
  4. Бланк-формула частной концепции
  5. В.13. Задача Коши для уравнения колебания струны. Формула Даламбера.
  6. В.3. Определённый интеграл и его свойства. Основная формула интегрального исчисления.
  7. В.6. Криволинейный интеграл. Формула Грина.

Теорема 4. Пусть функция f (x) непрерывна на [ a;b ] и F (x) – какая-либо ее первообразная на [ a;b ]. Тогда определенный интеграл от функции f (x) по отрезку [ a;b ] равен разности значений функции F(x) в точках b и a:

Доказательство. Из теоремы 3 следует, что наряду с функцией F(x) функция также является на [ a;b ] первообразной для f (x). Тогда по свойству первообразных для одной и той же функции на некоторой области имеем:

для любого x Î [ a;b ] (**)

Вычислим значение const. Для этого, используя свойство 1 определенного интеграла , рассмотрим равенство (**) при x = a:

Следовательно, равенство (**) можно переписать в виде:

для [ a;b ]

Теперь рассмотрим полученное равенство при x = b:

Это и есть формула Ньютона-Лейбница. Она является основной формулой интегрального исчисления, устанавливающей связь между определенным и неопределенным интегралами и дает правило вычисления определенного интеграла.

Замечание. Формулу Ньютона-Лейбница часто записывают в виде:

,

Где используется обозначение:

.


Дата добавления: 2015-07-10; просмотров: 220 | Нарушение авторских прав






mybiblioteka.su - 2015-2025 год. (0.005 сек.)