Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Построение циклических кодов

Читайте также:
  1. Возвращение иудеев из плена вавилонского и построение второго храма
  2. Дерево решений»: Построение, расчет затрат и доходов для различных форм предприятия
  3. Методы кодирования циклических кодов
  4. Описание входных данных. Получение ряда доходностей (случайной величины (СВ) Х). Построение графика доходностей
  5. Определение групповых кодов
  6. Оценка функции распределения и построение ее графика.
  7. Построение алгоритмической модели и ее реализация на ЭВМ

 

Циклические коды являются частным случаем групповых кодов и однозначно задаются с помощью порождающего (образующего) полинома

g(x)=gkxk+gk-1xk-1+…+g1x+g0.

Особенности порождающего полинома:

- порождающий полином g(x) имеет наименьшую степень среди многочленов данного идеала n+1);

- свободный член g0 всегда не равен нулю;

- любой многочлен циклической группы делится на g(x) без остатка;

- g(x) является делителем для двучлена n+1).

Так как любое кодовое слово b(х) должно делиться на g(x), то

b(х)=n(х)g(х). (4.1)

Соотношение (4.1) описывает процесс кодирования слова. n=(nm-1,nm-2,…,n0) - вектор первичного (безызбыточного) кода длиной m разрядов, записанный в виде полинома

.

В результате применения соотношения (4.1) можно построить неразделимый циклический код, для которого образующая матрица имеет следующий вид:

.

Желательно циклический код представлять в виде разделимого кода, т.е. в кодовой комбинации b(х)=bn-1xn-1+bn-2xn-2+…+b1x+b0, коэффициенты кодового полинома при xn-1, xn-2,…,xk - информационные символы, а при xk-1,xk-2, …,x,1 - контрольные символы.

Для получения разделимого циклического кода достаточно вычислить остатки от деления произведения xkni(х), (i-0,1,…m-1) на порождающий полином g(x).

Если выбрать в качестве базисных кодовых полиномов xixk+Ri(х), то получим для разделимого кода порождающую матрицу в канонической форме Gm,n=|ImRm,k|. Причем,

. (4.2)

Пример. Полином g(х)=х32+1 порождает циклический код (7,4). Информационные элементы кодовых комбинаций, используемые в качестве строк образующей матрицы, имеют следующую запись: ni(х)=х0, ni(х)=х1, ni(х)=х2, ni(х)=х3.

Тогда, R0(х)=Rem[xkx0/g(x)]=Rem[x3/(х32+1)]=х2+1, R1(х)=Rem[x4/(х32+1)]=х2+x+1, R2(х)=Rem[x5/(х32+1)]=x+1, R6(х)=Rem[x6/(х32+1)]=x2+x.

Образующая матрица будет иметь вид

.

 


Дата добавления: 2015-10-21; просмотров: 71 | Нарушение авторских прав


Читайте в этой же книге: Принципы построения многоканальных систем | Принцип действия канала с амплитудной манипуляцией | Принцип действия канала с частотной манипуляцией | Принцип действия канала с относительной фазовой модуляцией | Простой, безызбыточный код | Коды по законам комбинаторики | ПОМЕХОУСТОЙЧИВЫЕ КОДЫ | Коды для обнаружения одиночных ошибок | Определение групповых кодов | Проверочная матрица |
<== предыдущая страница | следующая страница ==>
Условия обнаружения и исправления ошибок| Методы обнаружения и исправления ошибок

mybiblioteka.su - 2015-2024 год. (0.006 сек.)