Читайте также:
|
|
В М1Моро в качестве основного средства формирования представлений о смысле действий сложения и вычитания выступают простые текстовые задачи.
В основе другого подхода (М1Истомина) лежит выполнение учащимися предметных действий и их интерпретация в виде графических и символических моделей. В качестве основной цели здесь выступает осознание предметного смысла числовых выражений и равенств. Деятельность учащихся сначала сводится к переводу предметных действий на язык математики, а затем к установлению соответствия между различными моделями (под картинкой, где дети выпускают рыбок в один аквариум на писано символическое выражение действия 2+3).
Можно условно выделить три вида ситуаций, связанных с операцией объединения: 1) увеличение данного предметного множества на несколько предметов; 2) увеличение на несколько предметов множества, равночисленного данному; 3) составление одного предметного множества из двух данных.
При формировании у детей представлений о вычитании можно условно ориентироваться на следующие предметные ситуации: 1 ) уменьшение данного предметного множества на несколько предметов; 2) уменьшение множества, равночисленного данному, на несколько предметов; 3) сравнение двух предметных множеств.
В процессе выполнения предметных действий у младших школьников формируется представление о вычитании как о действии, которое связано с уменьшением количества предметов.
Приём сложения однозначных чисел с переходом через десяток на начальном обучении математике включает следующие операции:
· первая операция связана с дополнением большего слагаемого до числа 10;
· вторая - связана с представлениями учащихся о смысле действий сложения и вычитания и с усвоением ими состава однозначных чисел. Опираясь на эти знания, учащиеся отвечают на вопрос - сколько единиц осталось во втором слагаемом после того, как выполнена первая операция;
· третья операция - оставшиеся единицы второго слагаемого прибавляются к числу 10.
Таким образом, для овладения данным приемом необходимо прочное усвоение детьми состава каждого числа в пределах 10 и состава двузначного числа из десятков и единиц. Этот прием можно представить в виде торжественных преобразований:
8+5=8+(2+3)=(8+2)+3=10+3=13,
при выполнении которых используется сочетательное свойство сложения или правило прибавления суммы к числу.
Пользуясь вычислительным приёмом, дети постепенно составляют таблицу сложения в пределах 20. Затем все рассмотренные случаю сводятся в общую таблицу, которую учащиеся должны прочно усвоить. В таблице 20 случаев. Она включает сложение одинаковых слагаемых: 6+6, 7+7, 8+8, 9+9 и случаи прибавления меньшего числа к большему. Для прибавления числа к меньшему числу используется переместительное свойство сложения.
Для вычитания однозначного числа из двузначного (в пределах 20, с переходом через десяток) обычно используются два вычислительных приёма. В основе первого лежит понятие о взаимосвязи суммы и слагаемых и прочное знание таблицы сложения в пределах 20.
В состав этого приёма входят операции:представление уменьшаемого в виде суммы двух слагаемых, одно из которых равно вычитаемому; вычитание из данной суммы слагаемого, равного вычитаемому; в основе этой операции лежит правило: если из суммы вычесть одно слагаемое, то останется другое.
В состав другого приёма, который называют отсчитыванием по частям, входят операции: вычитание из данного двузначного числа его разрядных единиц (в результате выполнения этой операции всегда получается число 10); представление вычитаемого в виде суммы слагаемых, одно из которых равно количеству разрядных единиц двузначного числа (в основе этой операции лежит знание состава однозначных чисел); Вычитание из 10 второго слагаемого этой суммы.
При сложении и вычитании двузначных и однозначных чисел, так же как при сложении и вычитании однозначных, учащиеся пользуются различными вычислительными приёмами. Способом введения нового вычислительного приёма является выполнение учащимися действий с моделями десятков и единиц и соотнесение этих действий с математической записью.
В процессе такой деятельности учащиеся наблюдают изменение цифр, обозначающих в записи числа десятки (единицы), при увеличении (уменьшении) числа на несколько десятков (единиц).
Примеры заданий.
· Увеличивай число 40 на 2 дес., на 3 дес., на 5 дес.
Наблюдай, какая цифра изменяется в числе 40. Какие еще числа можно прибавить к числу 40, чтобы изменилась только цифра, обозначающая десятки, а цифра, обозначающая единицы, не изменилась? Запиши числовые равенства.
· Уменьшай число 90 на 2 дес., на 5 дес., на 4 дес. Наблюдай! Какая цифра изменяется в числе 90? Какие числа ещё можно вычесть из числа 90, чтобы изменилась цифра, обозначающая десятки, а цифра, обозначающая единицы, не изменилась? Запиши числовые равенства.
· По какому правилу составлены пары выражений? Составь по этому же правилу пары выражений с другими числами:
9-2 6+3 4+3 7-5 8-6
90-20 60+30 40+30 70-50 80-60
· Используя числа 90,30, 20, 70, 60,запиши восемь верных числовых равенств
По какому правилу составлены столбики выражений? Составь по этому же правилу ещё три столбика выражений с другими числами. Найди значения всех выражений.
27-7 38-8 43-3
27-20 38-30 43-40
20+7 30+8 40+3
· По какому правилу составлены столбики выражений? Составь по этому же правилу ещё три столбика. Найдите значения выражений.
6+3 5+4 2+7
60+30 50+40 20+70
9-6 9-4 9-7
90-60 90-40 90-70
· По какому правилу записан каждый ряд чисел:
90, 70, 80, 60, 70, 50, 60, 40, 50…
20, 50, 30, 60, 40, 70, 50, 80, 60…
Приведенные задания различны по своей форме, требуют рассуждения. Задания постепенно усложняются, предъявляя всё более высокие требования к интеллектуальной деятельности школьников.
Вариант урока Истомина стр. 69 «Сложение».
Учитель. Прочитайте слово, которое написано наверху страницы.
Дети. Сложение.
У. Может быть, кто-нибудь знает, что означает это слово?
Д. Это плюс, это прибавить. У зайчика одна морковка, а у белочки 3. Всего у них 4 морковки. Это сложение.
Помимо этих ответов, были и другие, но они в меньшей степени относились к содержанию этого понятия.
У. Сегодня на уроке мы постараемся разобраться, что же такое сложение. Кто может прочитать задание? (№ 152). Расскажи, что делают Миша и Маша?
Д. Миша и Маша запускают рыбок в один аквариум, они сажают рыбок вместе. Маша запускает в аквариум трех рыбок, а Миша двух; рыбки будут плавать вместе и т.д.
Обратите внимание, сколько важных и нужных слов, характеризующих смысл действия "сложение", произнесли дети. При этом, заметьте, им не давалось никакого образца. Каждый из них работал на своем уровне и использовал только те слова, которые ему были понятны.
У. Я попробую изобразить на доске то, что нарисовано на картинке.
Учитель выкладывает на фланелеграфе трех рыбок.
– Все ли правильно я сделала?
Д. Вы показали рыбок только Маши, надо еще добавить рыбок Миши. У него две рыбки.
Учитель выкладывает на фланелеграфе еще двух рыбок.
Аналогичная работа проводится с верхней правой картинкой, которая дана в учебнике. Миша ставит в вазу четыре тюльпана, а Маша пять васильков. Они объединяют цветы вместе в одной вазе.
У. Вы очень хорошо рассказывали, что нарисовано на картинках. А теперь давайте попробуем то, что вы рассказывали словами, записать с помощью математических знаков. Посмотрите, под картинками даны в рамочках какие-то записи. Может быть, некоторые из вас могут их прочитать, а вот как они называются, вы, наверное, не знаете.
Некоторые дети пытаются угадать названия записей. Одни говорят – примеры, другие – неравенства, третьи даже – таблица умножения.
У. Нет, никто не угадал. Эти записи называются "математические выражения".
Д. А здесь это написано.
У. Верно, прочитай всем ребятам то, что написано в учебнике. (Действия Миши и Маши можно записать математическими выражениями.)
–А теперь внимательно рассмотрите эти выражения. Может быть, кто-то догадается, какие выражения относятся к верхней левой картинке.
Ориентируясь на числа, дети называют выражения 3 + 2 и 2 + 3 и объясняют, что обозначает каждое число в выражении: 3 – это количество рыбок, которых Маша запускает в аквариум, 2 – это количество рыбок, которых Миша запускает в аквариум.
У. Верно, выражения 3 + 2 и 2 + 3 обозначают, что рыбок объединили вместе.
Теперь подберите выражения к верхней правой картинке.
Дети легко справляются с заданием и объясняют, что обозначают на картинке числа 4 и 5.
А теперь попробуйте самостоятельно подобрать выражения к другим картинкам. У каждого из вас листочек, который разделен на четыре части. Вы должны записать выражения, которые подходят к левой нижней картинке и к правой нижней картинке.
Дети самостоятельно выполняют задание. Учитель наблюдает за их работой, ходит по классу, помогает некоторым детям. Затем он пишет на доске, которая разделена на четыре части, математические выражения.
Дата добавления: 2015-09-05; просмотров: 1257 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Отрезок натурального ряда. Присчитывание и отсчитывание по 1. Сравнение чисел. | | | Приемы устного сложения и вычитания. |