Читайте также:
|
|
Если распространить (в силу линейности M. у.) фурье-разложение и на зависимость полей от пространственных координат, т. е. представить общее решение ур-ний (1) - (4) в виде суперпозиции плоских волн типа (k - волновой вектор), то для фурье-компонентов нолей k и т. д.) получим систему алгебраич. ур-ний:
Такое сведение M. у. к набору ур-ний для осцилляторов (осцилляторов поля) составляет важный этап перехода к квантовой электродинамике, где эл.-магн. поле рассматривается как совокупность фотонов, характеризуемых энергиями и импульсами Однако и в макроэлектродинамике представления (1 в) - (4 в) оказываются иногда вполне адекватными физ. сущности процессов: напр., при выделении откликов высокодобротных систем (см. Объёмный резонатор) или при изучении "механизма формирования" мод со сложной пространственной структурой из набора плоских волн и т. п. Наконец, M. у. в форме (1 в) - (4 в) удобны для описания свойств эл.-динамич. систем, обладающих не только временной, но и пространственной дисперсией, если последняя задаётся в виде зависимости параметров от волнового вектора k.
Дата добавления: 2015-08-21; просмотров: 125 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Общая характеристика Максвелла уравнений | | | Материальные уравнения |