|
Читайте также: |
Приклад. Знайти
.
Розв’язання. Маємо невизначеність
. Для розкриття невизначеності потрібно позбутись ірраціональності в чисельнику:

.
Дві важливі границі
Перша важлива границя
.
Доведення. Функція
визначена в області
. Оскільки має місце рівність
, то функція парна, з чого випливає, що вона симетрична відносно осі ординат. Тому, якщо в точці
існують однобічні границі, то вони рівні між собою, тобто:

Розглянемо границю цієї функції в точці
справа і доведемо, що
.
Побудуємо у першій чверті координатної площини
коло одиничного радіуса (рис. 4) і візьмемо кут х
, який дорівнює аргументу функції.
Тоді:
1)
;
2)
;
3)
.
Порівнюючи площі трикутників ОАС, ОВС і колового сектора ОАС, дістанемо
,
звідки
.
Розділивши останні нерівності на
, дістанемо
або
.
Оскільки
, то згідно теореми “про два міліціонери”, маємо
.
Приклад. Знайти
, при
.
Розв’язання. Зведемо розглядувану границю до першої важливої границі, помноживши та поділивши дріб на а та ввівши позначення
:
.
Дата добавления: 2015-08-09; просмотров: 66 | Нарушение авторских прав
| <== предыдущая страница | | | следующая страница ==> |
| Невизначеність вигляду , задана відношенням двох многочленів | | | Друга важлива границя |