Читайте также:
|
|
.
В центре контакта возникают максимальное давление
и контактное сближение, определяемое выражением
.
Распределение давления по площадке давления является эллиптическим:
.
Необходимым условием эффективного разрушения горных пород при бурении является действие статического усилия, обеспечивающего внедрение породоразрушающих элементов вооружения (инденторов) в поверхность горной породы забоя скважины. По этой причине определение механических свойств горных пород вдавливанием в них инденторов является исключительно важной задачей. Эта задача решается с помощью методики определения механических свойств горных пород, разработанной Л. А.Шрейнером.
6.2.1. Определение твердости горных пород. Твердость не является физическим параметром, т.к. в различных методах определения этой величины размерность твердости различная. Академик В.Д. Кузнецов предложил для оценки твердости использовать физическую величину - удельную свободную поверхностную энергию γо тела, характеризующую величину потенциальной энергии поверхности твердого тела. Предложение академика В.Д.Кузнецова не было воплощено в жизнь, т.к. экспериментальные методы определения величины γо твердых тел и в настоящее время не точны.
Твердость – понятие техническое. В бурении под твердостью горных пород понимают величину сопротивленияразрушению поверхности породы при вдавливании в неё индентора. Вдавливание индентора как основной вид деформирования горной породы при бурении скважин обусловило разработку соответствующего метода определения твердости и других механических свойств горных пород – метод Л.А.Шрей-нера.
В зависимости от скорости вдавливания индентора различают статическую и динамическую агрегатную твердость горных пород. Методом Л.А. Шрейнера определяется величина статической агрегатной твердости горных пород. Статической она называется потому, что вдавливание индентора в образец происходит достаточно медленно (~ 0,1 мм/мин), а агрегатной – потому, что торец индентора воздействует на агрегат (совокупность минералов, входящих в состав данной горной породы).
Для плотных и однороднопористых горных пород следует применять инденторы с площадью торца (1 ÷ 2)·10-6 м2 ; для горных пород с линейным размером зерен, превышающим величину 2,5·10-4 м, рекомендуется применять индентры с площадью торца 3·10-6 м2, а для сильнопористых и малопрочных горных пород – инденторы с площадью торца 5·10-6 м2.
Деформирование и последующее разрушение горной породы при вдавливании жесткого цилиндрического индентора в образцы горных пород наиболее точно воспроизводит процесс разрушения породы на забое скважины, когда в поверхность забоя вдавливаются породоразрушающие элементы вооружения долота, чем разрушение, возникающее при одноосном сжатии образца, при разрушении образцов, находящихся в более сложном напряженном состоянии. В результате вдавливания индентора происходит местное разрушение поверхности образца (выкол) c образованием лунки.
Для определения твердости горных пород методом Л.А.Шрейнера используется установка УМГП-3, позволяющая осуществить вдавливание индентора в поверхность образца горной породы с одновременной записью деформационной кривой F – δ (F – сила вдавливания, δ – глубина внедрения индентора в поверхность образца горной породы) (рис. 31).
Отклонение от линейной связи между силой вдавливания и абсолютной деформацией δ горной породы в методе Л.А.Шрейнера связывается с развитием пластической деформации в горной породе под пятном контакта. Это означает, что объёмной деформации горной породы ядра сжатия не должно происходить, т.е. справедливо равенство εv = 0.
В этом случае на участке АВ деформационной кривой происходит деформационное упрочнение горной породы под пятном контакта в результате развития пластических сдвигов. Как следствие возникновения пластической деформации в горной породе под пятном контакта, процесс вдавливания индентора в поверхность образца горной породы должен характеризоваться следующей особенностью. При снятии нагрузки, например в точке N (рис. 31), должно наблюдаться упругое последействие: уменьшение величины деформации по линии NM.
Рис. 31. Деформационная кривая упруго-пластической горной породы при вдавливании индентора |
При дальнейшем вдавливании индентора в эту же «точку» поверх-ности образца горной породы, развитие пластической деформации дол-жно начаться при напряжениях, превышающих величину напряжений, соответствующих точке N. Это означает, что горная порода под пятном контакта становится прочнее. (Отсюда и произошло рождение понятия «деформационное упрочнение»). По этой причине для разрушения горной породы под индентором и получения выкола необходимым условием является непрерывное увеличение силы вдавливания F до значения F b, при котором происходит выкол и достигается максимальное внедрение индентора в горную породу.
Твердость H горной породы определяется выражением
H = Fb / Sш,
где S ш – площадь торца цилиндрического индентора.
Для пластично-хрупких горных пород аналогичным соотношением вводится понятие условного предела текучести (предел упругости)
Po = Fа / Sш,
где F а – величина силы вдавливания в точке возникновения нелинейного участка на деформационной кривой (рис. 31).
Наличие зависимости H, P oот величины площади торца вдавливаемого индентора позволяет получаемые значения твердости, условного предела текучести считать первым приближением. При бурении скважин контактная площадь долота с разбуриваемой горной породой существенно превышает площадь торца индентора, используемого в лабораторных исследованиях.
Все горные породы по величине твердости Н и предела текучести Р о разделены на три группы: мягкие (М), средние (С), твердые (Т). Каждая группа содержит четыре категории. В табл. 1 приведена класссификация горных пород по величине твердости и условного предела текучести.
Таблица 6
Дата добавления: 2015-08-13; просмотров: 116 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Вдавливании инденторов | | | Классификация горных пород по величине твердости и условного предела текучести |