Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Лабораторная работа №5. Кафедра химии

Читайте также:
  1. g. Если работает на табачном проекте, в первую очередь спрашиваем, курит ли человек
  2. I. Историческая работа сообразно её материалам
  3. II. Групповая работа
  4. II. Историческая работа сообразно её формам 1 страница
  5. II. Историческая работа сообразно её формам 2 страница
  6. II. Историческая работа сообразно её формам 3 страница
  7. II. Историческая работа сообразно её формам 4 страница

Кафедра химии

Адсорбция вещества из газа на твердом адсорбенте

Лабораторная работа №5

по дисциплине «Физическая и коллоидная химия»

специальность

специализация

Проверил Выполнили

к.х.н.,доцент студенты группы ТЖМПЗ-092

____________ С.Г.Константинов ______________________

______________________

______________________

______________________

______________________

«____» ____________2012г. «____»____________ 2012 г.

Могилев 2012

 

1. Цель работы – познакомиться с основными закономерностями процессов адсорбции газа на твердой поверхности и научиться обрабатывать экспериментальные данные по адсорбции – вручную и на ЭВМ. Определить коэффициенты изотермы адсорбции Лэнгмюра. Рассчитать удельную поверхность адсорбента sуд.

2.Работа выполняется на ЭВМ по имеющейся программе.

3. Теоретическое введение.

В процессах физической адсорбции можно говорить о быстром установлении равновесия, положение кото­рого определяется, в соответствии с принципом Ле-Шателье, темпера­турой T, концентрацией (давлением) адсорбата P и величиной адсорбции (a). Величина адсорбции или просто адсорбция (a) измеряется в расчете на грамм адсорбента (удельная адсорбция aуд) в граммах адсорбата (г/г) или в моль/г (ммоль/г). Также используется безразмерная величина Θ = a /aпред – степень ад­сорбции. Здесь aпред – предельная адсорбция, т.е. максимальная адсорбция при условии, что вся поверхность адсорбента, доступная для адсорбции, занята молекулами адсорбата.

В соответствии с теорией Лэнгмюра, при адсорбции на поверх­ности адсорбента образуется лишь мономолекулярный слой адсорба­та, т.е. нескомпенсированные межмолекулярные силы адсорбента практически насыщаются одним слоем адсорбированных молекул. Та­кая адсорбция характеризуется достаточно большим тепловым эффек­том и по своей природе соответствует слабой хемосорбции. Предпо­лагается, что по мере увеличения адсорбции величина теплового эффекта остается постоянной – это соответствует предположению, что поверхность адсорбента энергетически однородна и что адсорбируе­мые молекулы не взаимодействуют между собой. Оба эти предположе­ния сильно упрощают картину адсорбции, тем не менее, получаемое уравнение (изотерма адсорбции Лэнгмюра) часто вполне удовлетворительно описывает экспериментальные данные и широко применяется в практических расчетах в силу его простоты и удобства вычислений.

Запишем процесс адсорбции в форме химической реакции:

[S] + (A) ↔ [SA] (1)

[свободная поверхность] + (адсорбат) ↔ [адсорбционный комплекс]

1 – Θ P Θ

Эта реакция записана для адсорбции газа на твердой поверхности, однако аналогичные соотношения могут быть получены и для адсорб­ции из раствора, если использовать активность или концентрацию (C) растворенного вещества.

В уравнении (1) [SA] – как бы поверхностное химическое соединение, образованное молекулами адсорбата (A) с твердой поверхностью [S]; будем его называть адсорбционным комплексом. Концентрацию этого комплекса на поверхности будем считать равной степени адсорбции Θ. Эта безразмерная величина показывает долю поверхности, занятой адсорбционным комплексом, и по своему смыслу аналогична молярной доле вещества в газе или растворе. Тогда величина 1 – Θ показывает долю свободной поверхности.

Предположим, что в рассматриваемой системе (1) установилось химическое равновесие. Константа равновесия этого процесса должна включать актив­ности (в идеальной системе – концентрации) всех ее участников. Как и для идеальных растворов будем предполагать, что активность адсорбированного вещества, образующе­го с адсорбентом поверхностный адсорбционный комплекс, равна молярной доле этого вещества на поверхности, т.е. Θ. Тогда ак­тивность свободной поверхности будет равна 1 – Θ. Активность газа равна P (атм). Таким образом, получаем следующее выражение для константы равновесия K процесса адсорбции (1):

. (2)

После простых преобразований получаем:

,

. (3)

Уравнение (3) есть уравнение (или изотерма) адсорбции Лэнгмюра, в нем величина K, как это исторически принято, заменена на константу b. Таким образом, константа b в уравнении Лэнгмюра является по своему смыслу константой равновесия процесса адсорбции (1). В изотермических условиях она должна быть постоянной, не должна зависеть от a и P. Вместе с тем, она сильно зависит от температуры – с ее повышением равновесие (1) смещается, по принципу Ле-Шателье, влево, в сторону эндотермического процесса десорбции, а константа b при этом быстро уменьшается.

Вторая константа уравнения Лэнгмюра – aпред. Из уравнения (3) следует, что a → aпред при P → ∞. Поскольку при нагревании вещество, находящееся на поверхности, расширяется (твердая поверхность также расширяется, но в меньшей степени), константа aпред при повышении температуры несколько уменьшается.

По результатам выполнения работы строится график a – P – изотерма адсорбции. На этот график наносится также величина aпред.

На рис.1 показан характер кинетических кривых a – t (время) в процессе установления адсорбционного равновесия при двух раз­ных температурах (T1< T2). В соответствии с законами смещения равновесия, равновесная величина aпред2 будет меньше, чем aпред1. В то же время при повышении температуры увеличивается ско­рость достижения равновесия адсорбции и кривая (2) на начальном участке идет выше и круче, чем кривая (1). Поэтому эти две кривые пе­ресекаются в некоторой точке tx.

Рис. 1 Кинетические кривые адсорбции при двух разных температурах, T2 >T1

Правее этой точки преобладает влияние величины равновесной адсорбции, левее – преобладает влияние кинетических факторов. Исследования подобных кинетических кривых очень важны с точки зрения оптимизации технологических процессов и достижения максимального извлечения целевого компо­нента из потока газа, проходящего через слой адсорбента.

Из общих принципов смещения равновесия могут быть нарисова­ны и другие графики, используемые при рассмотрении процессов адсорбции – изобара (P = const, рис.2) (или изопикна, C = const – для растворов) и изостера (a = const, рис.3).

При постоянном давлении адсорбата (рис.2) адсорбция с ростом температуры уменьшается, равновесие (1) смещается влево – в сторону эндотермического процесса десорбции.

При постоянной адсорбции (рис.3) величины Θ и 1 – Θ в уравнении реакции (1) с увеличением температуры остаются постоянными, поэтому смещение равновесия влево возможно только за счет увеличения давления адсорбата.

Рис. 2 – Изобара адсорбции Рис. 3 – Изостера адсорбции

Для определения констант уравнения Лэнгмюра (3) исходные данные необходимо обработать методом наименьших квадратов на ЭВМ или графи­ческим методом (вручную). С этой целью преобразуем уравнение (3):

1/a = 1/aпред + 1/(aпредb)∙1/P = А + В·1/Р. (4)

Уравнение (4) соответствует прямой линии в координатах 1/a – 1/P, причем на соответствующем графике отрезок, отсекаемый на оси ор­динат, равен 1/aпред, а из тангенса угла наклона и величины aпред определяется коэффициент b.

Найденное значение aпред (моль/г) позволяет рассчитать удельную поверхность адсорбента sуд (поверхность, приходящуюся на 1 г адсорбента), если известна площадь s1, занимаемая в адсорбцион­ном слое одной молекулой (посадочная площадка молекул адсорбата):

sуд = aпред s1 NA, (5)

где NA – число Авогадро.

4. Методика выполнения (ход работы).

В «Методических указаниях» [2] по двум последним цифрам номера зачетной книжки определяют исходные данные для расчетов на ЭВМ – пять пар величин Р(мм рт. ст.) – а (г/г), молярную массу адсорбата М и посадочную площадку молекул адсорбата s1.

Запускают на ЭВМ программу «ads1.exe» и выполняют работу в соответствии с указаниями, которые появляются на экране монитора.

5. Результаты работы.

C экрана монитора записывают таблицу величин Р, а, 1/Р и 1/а.

Р, мм рт. ст. а, г/г 1/Р 1/а
       
       
       
       
       

На миллиметровой бумаге формата А4 по этим данным строят график зависимости 1/а – 1/Р, по этому графику определяют приближенные значения aпред и b (уравнение 4).

Записывают с экрана результаты точного расчета коэффициентов уравнения Лэнгмюра на ЭВМ методом наименьших квадратов по уравнению (4).

А В aпред = 1/А b = А/В
       

Сравнивают эти коэффициенты с найденными ранее графическим методом приближенными величинами и оценивают их относительную погрешность.

Записывают уравнение Лэнгмюра с найденными на ЭВМ коэффициентами (уравнение 3).

По уравнению (5) определяют удельную поверхность адсорбента. При этом величина aпред в этом уравнении должна быть выражена в единицах моль/г, а величина sуд должна быть получена в единицах м2/г.

6. Заключение (выводы).

В результате выполнения работы установлены основные закономерности процессов адсорбции газа на твердой поверхности:

- при постоянной температуре адсорбция газа возрастает с увеличением его парциального давления, построена изотерма адсорбции в координатах a – P;

- при постоянном давлении адсорбция с увеличением температуры уменьшается, а при постоянной адсорбции давление адсорбата быстро возрастает; исходя из общих принципов смещения равновесия нарисован общий вид изобары и изостеры адсорбции;

- освоены методы обработки экспериментальных данных по адсорбции – вручную и на ЭВМ;

- определены коэффициенты изотермы адсорбции Лэнгмюра, рассчитана удельная поверхность адсорбента sуд.

7. Индивидуальное задание по теме: Задание 7.4 [3].

8. Список литературы:

1) Общие требования и правила оформления текстовых документов: СТП СМК 4,2,3-01-2011. – Могилев: МГУП, 2011.

2) Методические указания для выполнения лабораторных работ на ЭВМ: «Кинетика химических реакций. Адсорбция». Для студентов технологических, химико-технологических и химических специальностей вузов / Могилевский государственный университет продовольствия; О.Г. Поляченок, Л.Д. Поляченок. – Могилев, 2005. – 40 с.

3) Поляченок, О.Г. Физическая и коллоидная химия. Практикум: Учебное пособие / О.Г. Поляченок, Л.Д. Поляченок. – Минск: Лаб. полиграфии УО БГТУ, 2006. – 380 с. – С.268–295.

4) Поляченок, О.Г. Физическая и коллоидная химия. Конспект лекций: / О.Г.

Поляченок, Л.Д. Поляченок. – Могилев: МГУП, 2008. – 196 с. – С. 153–160.


Дата добавления: 2015-07-24; просмотров: 97 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Слайд 4: История развития.| Теоретическое введение.

mybiblioteka.su - 2015-2024 год. (0.014 сек.)