Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Процесс чистого размножения

Читайте также:
  1. Cуд и процесс по древнерусскому праву. (из лекции)
  2. I Участие прокурора в гражданском процессе
  3. I. Порядок организации учебного процесса
  4. II. 8.4. Развитие речи в процессе обучения
  5. II. Порядок выполнения работы на разработку технологического процесса изготовления детали методом холодной листовой штамповки.
  6. III. 13.1. Понятие о воображении, его основных видах и процессах
  7. III. Исторический процесс по О. Конту

Простейшее обобщение пуассоновского процесса получается при предположении, что вероятности скачков могут зависеть от текущего состояния системы. Это приводит нас к следующим требованиям.

Постулаты. (i) Непосредственный переход из состояния возможен только в состояние .(ii) Если в момент времени система находится в состоянии , то (условная)вероятность одного скачка в последующем коротком интервале времени между и равна тогда как (условная) вероятность более чем одного скачка в этом интервале есть .

Отличительная черта этого предположения заключается в том, что время, которое система проводит в любом конкретном состоянии, не играет 6никако роли; возможны внезапные изменения состояния, однако, пока система находится в одном состоянии, она не стареет.

Пусть снова будет вероятностью того, что в момент времени система находится в состоянии . Эти функции удовлетворяют системе дифференциальных уравнений, которую можно вывести при помощи рассуждений предыдущего параграфа с тем лишь изменением, что (5) в предыдущем параграфе заменяется на

. (1)

Таким образом мы получим основную систему дифференциальных уравнений

(2)

В пуассоновском процессе было естественно предполагать, что в момент времени 0 система выходит из начального состояния . Теперь мы можем допустить более общий случай, когда система выходит из произвольного начального состояния . Тогда получаем, что

(3)

Эти начальные условия единственным образом определяют решение системы (2). (В частности, ) Явные формулы для выводились независимо многими авторами, однако для нас они не представляют интереса.

Пример. Радиоактивный распад. В результате испускания частиц или -лучей радиоактивный атом, скажем урана, может превратиться в атом другого вида. Каждый вид представляет собой возможное состояние, и, когда процесс протекает, мы получаем последовательность переходов . Согласно принятым физическим теориям, вероятность перехода остается неизменной, пока атом находится в состоянии , и эта гипотеза находит выражение в нашем исходном предположении. Стало быть, этот процесс описывается дифференциальными уравнениями (2) (факт, хорошо известный физикам). Если – конечное состояние, из которого невозможны никакие другие переходы, то и система (2) обрывается при . (При мы автоматически получаем ).


Дата добавления: 2015-07-26; просмотров: 112 | Нарушение авторских прав


Читайте в этой же книге: Общие понятия. Марковские процессы | СТРУКТУРА СИСТЕМЫ МАССОВОГО ОБСЛУЖИВАНИЯ | Входящий поток заявок | Механизм обслуживания | Дисциплина обслуживания. | Формула Литтла | МОДЕЛИ, ОПИСЫВАЕМЫЕ ПРОЦЕССАМИ РОЖДЕНИЯ И ГИБЕЛИ | N-КАНАЛЬНАЯ СМО С НЕОГРАНИЧЕННОЙ ОЧЕРЕДЬЮ | И ЕГО ПРОДОЛЖИТЕЛЬНОСТЬ | А – незавершенная работа и период занятости; б – история требований. |
<== предыдущая страница | следующая страница ==>
ПУАССОНОВСКИЙ ПРОЦЕСС| ПРОЦЕСС РАЗМНОЖЕНИЯ И ГИБЕЛИ

mybiblioteka.su - 2015-2024 год. (0.006 сек.)