Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Вопрос 2. Процессы, происходящие в колебательном контуре.

Читайте также:
  1. Векторная диаграмма токов и напряжений в последовательном LC-контуре.
  2. Вопрос 1. Уравнение колебаний в контуре.
  3. Вынужденные колебания в параллельном колебательном контуре.
  4. Лекция 4 ПРОИЗВОДСТВЕННЫЕ ПРОЦЕССЫ, ПРИНЦИПЫ ОРГАНИЗАЦИИ ПРОИЗВОДСТВЕННОГО ПРОЦЕССА
  5. Нервные процессы, их взаимодействие
  6. Процессы, происходящие в ходе ее работы

Мы математически доказали факт существования свободных гармонических колебаний в колебательном контуре. Однако, остается неясным, почему такой процесс возможен. Что является причиной возникновения колебаний в контуре?

В случае свободных механических колебаний такая причина была найдена – это внутренняя сила, возникающая при выведении системы из положения равновесия. Эта сила в любой момент направлена к положению равновесия и пропорциональна координате тела (со знаком «минус»). Попробуем найти аналогичную причину возникновения колебаний в колебательном контуре.

Пусть колебания в контуре возбуждают, зарядив конденсатор и замкнув его на катушку.

В начальный момент времени заряд на конденсаторе максимален. Следовательно, напряжение и энергия электрического поля конденсатора тоже максимальны.

Ток в контуре отсутствует, энергия магнитного поля тока равна нулю.

 

Первая четверть периода – разрядка конденсатора.

Обкладки конденсатора, имеющие разные потенциалы, соединили проводником, поэтому конденсатор начинает разряжаться через катушку. Заряд, напряжение на конденсаторе и энергия электрического поля убывают.

Ток, появившийся в цепи, нарастает, однако, его нарастанию препятствует ЭДС самоиндукции, возникающая в катушке. Энергия магнитного поля тока увеличивается.

 

Прошла четверть периода - конденсатор разрядился.

Конденсатор разрядился, напряжение на нем стало равным нулю. Энергия электрического поля в этот момент тоже равна нулю. По закону сохранения энергии исчезнуть она не могла. Энергия поля конденсатора полностью перешла в энергию магнитного поля катушки, которая в этот момент достигает своего максимального значения. Максимален ток в цепи.

Казалось бы, в этот момент ток в цепи должен прекратиться, ибо исчезла причина возникновения тока – электрическое поле. Однако, исчезновению тока опять таки препятствует ЭДС самоиндукции в катушке. Теперь она будет поддерживать убывающий ток, и он будет продолжать течь в прежнем направлении, заряжая конденсатор. Начинается вторая четверть периода.

 

Вторая четверть периода – перезарядка конденсатора.

Ток, поддерживаемый ЭДС самоиндукции, продолжает течь в прежнем направлении, постепенно уменьшаясь. Этот ток заряжает конденсатор в противоположной полярности. Заряд и напряжение на конденсаторе увеличиваются.

Энергия магнитного поля тока, убывая, переходит в энергию электрического поля конденсатора.

Прошла вторая четверть периода – конденсатор перезарядился.

Конденсатор перезаряжается до тех пор, пока существует ток. Поэтому в тот момент, когда ток прекращается, заряд и напряжение на конденсаторе принимают максимальное значение.

Энергия магнитного поля в этот момент полностью перешла в энергию электрического поля конденсатора.

Ситуация в контуре в этот момент, эквивалентна исходной. Процессы в контуре повторятся, но в обратном направлении. Одно полное колебание в контуре, длящееся в течение периода, закончится, когда система вернется в исходное состояние, то есть когда конденсатор перезарядится в первоначальной полярности.

Нетрудно видеть, что причиной возникновения колебаний в контуре служит явление самоиндукции. ЭДС самоиндукции препятствует изменению тока: она не дает ему мгновенно нарастать и мгновенно исчезать.

Кстати, будет не лишним сопоставить выражения для расчета квазиупругой силы в механической колебательной системе и ЭДС самоиндукции в контуре:

 

Ранее были получены дифференциальные уравнения для механической и электрической колебательной систем:

 

Несмотря на принципиальные отличия физических процессов к механических и электрических колебательных системах, явно просматривается математическая тождественность уравнений, описывающих процессы в этих системах. Об этом следует поговорить подробнее.

 


Дата добавления: 2015-07-17; просмотров: 1039 | Нарушение авторских прав


Читайте в этой же книге: Вопрос 4. Колебательный контур с источником постоянного тока. | Закон сохранения энергии | Колебательный контур с двумя последовательно соединенным катушками. | Колебательный контур с двумя параллельно соединенным катушками. | Читаем уравнение гармонических колебаний. |
<== предыдущая страница | следующая страница ==>
Вопрос 1. Уравнение колебаний в контуре.| Вопрос 3. Аналогия между электрическими и механическими колебаниями.

mybiblioteka.su - 2015-2024 год. (0.007 сек.)