Читайте также:
|
|
Смещение колеблющейся точки от положения равновесия, описывается уравнением:
ее ускорение равно второй производной от смещения по времени тогда сила, действующая на колеблющуюся точку, по второму закону Ньютона равна
- то есть сила пропорциональна смещению х и направлена против смещения к положению равновесия. Эта сила называется возвращающей силой. В случае груза на пружине возвращающей силой является сила упругости, в случае математического маятника – составляющая силы тяжести.
Возвращающая сила по характеру подчиняется закону Гука F= -kx, где
– коэффициент возвращающей силы. Тогда потенциальная энергия колеблющейся точки равна:
(постоянную интегрирования выбирают равной нулю, чтобы при х =0 энергия Wn =0).
Кинетическая энергияосциллятора:
где , тогда
Полная механическая энергия равна сумме кинетической и потенциальной энергий, и в случае свободных колебаний без трения сохраняется (рис.1.1.15). Когда материальная точка совершает колебания, кинетическая энергия переходит в потенциальную, и наоборот. В крайних точках (х = ±А) скорость , кинетическая энергия равна нулю, и полная энергия равна потенциальной:
Таким образом, полная механическая энергия гармонического осциллятора пропорциональна квадрату амплитуды колебаний.
В положении равновесия (х =0) потенциальная энергия переходит в кинетическую:
В промежуточных точках полная энергия равна
а скорость
На рисунке 1.1.16 приведена кривая потенциальной энергии , горизонтальная линия соответствует полной энергии. Расстояние от этой линии до кривой равно кинетической энергии. Движение ограничено значениями х, заключёнными в пределах от –А до + А.
Средние за период значения кинетической и потенциальной энергии одинаковы и равны , так что средняя полная энергия системы равна полной энергии системы (средние значения ).
Лекция 2
Дата добавления: 2015-07-15; просмотров: 127 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Маятники | | | Границы его применимости |