Читайте также:
|
|
Обмотка якоря машины постоянного тока представляет собой замкнутую систему изолированных проводников, определенным образом уложенных в пазы сердечника якоря и присоединенных к коллектору. К обмотке якоря предъявляются ряд требований. Она должна обеспечить получение необходимой ЭДС, прохождения тока номинальной величины и безыскровую работу щеточного контакта. При этом она должна иметь достаточную электрическую, термическую и механическую прочность, обеспечивать возможно меньший расход материалов, максимальное значение КПД.
Обмотка якоря состоит из отдельных элементов–секций. Секция – это часть обмотки, содержащая один или несколько витков и присоединенная к двум коллекторным пластинам. Несколько секций скрепленных между собой для удобства укладки в пазы якоря образуют катушку. Секции в виде катушек являются основным конструктивным элементом при образовании якорной обмотки. Они укладываются в пазы в два слоя так чтобы левые стороны секций лежали в верхней части паза, а правые – в нижней. Такая обмотка носит название двухслойной (рисунок 1.11).
Рисунок 1.11
Части секций, лежащие в пазу, называются активными сторонами секции, они находятся в магнитном поле главных полюсов и при вращении якоря в них индуктируется ЭДС. Части секции, находящиеся вне пазов, называются лобовыми частями. Они находятся вне основного магнитного потока и ЭДС в них не индуктируется.
Верхняя сторона одной секции и нижняя сторона другой, уложенные в одном пазу, образуют так называемый элементарный паз (обозначается zэ). В реальном пазу может располагаться несколько элементарных пазов, их число равно числу секций в катушке. На рисунке 1.12, а показан разрез элементарного паза и разрез паза (рисунок 1.12,б), который имеет Us=2 элементарных паза.
Так как секция имеет два активные стороны, то каждой секции в обмотке соответствуют один элементарный паз. Концы секции присоединяются к коллекторным пластинам, при этом к каждой пластине присоединяют конец одной секции и начало следующей, в результате чего все секции соединяются последовательно и на каждую секцию приходится одна коллекторная пластина (рисунок 1.13).
Чтобы ЭДС, индуктируемые в активных сторонах секции, складывались и величина суммарной ЭДС секции при этом была наибольшей, необходимо секцию располагать в пазах сердечника так, чтобы ширина ее была равна или незначительно отличалась от полюсного деления τ. При этом с секцией будет сцепляться полный поток полюсов и ЭДС в ней будет достирать максимального значения. Для характеристики обмотки необходимо знать, как расположены в магнитном поле ее секции и как соединены они между собой. Это указывается на развернутой схеме обмотки. На этой схеме цилиндрические поверхности якоря и коллектора, разрезанные вдоль оси машины в любом месте, развертывают на плоскость и представляют прямоугольниками. Диаметр коллектора условно принимается равным диаметру якоря. Пазы якоря и все соединения проводников изображают отрезками прямых линий. Секции для простоты изображаются всегда одновитковыми (Wc =1). Активные стороны секций, находящиеся в нижнем слое паза, черчивают пунктиром. Для расчета, составлений схем и монтажа обмотки испопользуются понятия шагов обмотки. Расстояние между двумя активными сторонами секции, определяющие ее ширину (рисунок 1.14), называется первым частичным шагом обмотки y1. Расстояние между правой активной стороной секции и левой активной стороной последующей секции называется вторичным частичным шагом обмотки y2.
Рисунок 1.14
Расстояние между началами двух последовательно соединенных секций называется результирующим шагом обмотки y. Шаги y1, y2, y измеряются обычно числом элементарных пазов. Расстояние между коллекторными пластинами, к которым присоединяются начало и конец секции, измеренное числом коллекторных пластин, называется шагом обмотки по коллектору yк. Так как начало следующей секции присоединяется к концу предыдущей, то yк равен числу коллекторных делений между началом одной секции и началом следующей. По якорю это соответствует результирующему шагу y. Таким образом, ход обмотки по коллектору соответствует ходу обмотки по якорю. Это обеспечивает выполнение симметричной обмотки и справедливо для всех типов обмотки якоря.
По внешнему очертанию контуров, образуемых последовательно соединенными секциями, различают петлевые, волновые и комбинированные.
Простая петлевая обмотка называется такая обмотка, в которой начало и конец секции присоединяются к рядом лежащим коллекторным пластинам. Начало второй секции присоединяется к коллекторной пластине вместе с концом первой секции и т.д. (рисунок 1.15). За один обход поверхности якоря укладываются все секции обмотки и она замыкается. Соединенные секции
Рисунок 1.15
образуют петли, поэтому обмотка называется петлевой. Для такой обмотки yк=1.
При выполнении петлевой обмотки возможны два случая:
1. Конец секции присоединяется к коллекторной пластине, находящейся справа от исходной. Такую обмотку называют правоходовой. Для нее yк= +1.
2. Конец секции присоединяется к коллекторной пластине, находящейся слева от исходной. Такую обмотку называют левоходовой. Для нее yк= –1. В общем случае простой петлевой обмотки yк= ± 1.
Из рисунка 1.15 видно, что между шагами обмотки существует следующая связь
Если полюсное деление якоря измерять в элементарных пазах, то первый частичный шаг находится по формуле
где zэ – число элементарных пазов;
р – число пар полюсов машины;
E – наименьшая дробь, при которой у1, становится целым числом.
Эта формула справедлива для любого типа обмотки. При E=0, т.е. y1=τ получается обмотка с полным (диаметральным) шагом рисунок 1.17; если y1<τ – обмотка с укороченным шагом; если y1>τ – обмотка с удлиненным шагом. Укорочение и удлинение шага обмотки ведет к уменьшению ЭДС наводимой в секции. Однако при укорочении шага одновременно уменьшается длина лобовых частей, при удлиненным же шаге она возрастает. Обмотки с удлиненным шагом, как правило, не применяются.
Рис. 16
На рисунке 1.16 представлена развернутая схема простой петлевой обмотки с диаметральным шагом. Обмотка право–ходовая. Данные обмотки 2р = 2.
S=zэ=К=12; Ws=1; Us=1; y1=6; y2=5; y= yк= +1.
Порядок построения: 1–й верхний проводник соединяется с 7 нижним (т.к. y1=6), 7 нижний – со 2–м верхним (т.к. y2=5). Середина последнего соединения подводится к коллекторной пластине 2 (номер коллекторной пластины и номер присоединяемой к ней верхней стороны секции должны соответствовать). Далее 2–ой верхний проводник соединяется с 8–ым нижним и через коллекторную пластину 3 с 3–м верхним и т.д. В итоге обмотка должна замкнуться. На развернутой схеме размечаем полюсы. В проводниках под полюсами указываем направление индуктируемых в них ЭДС. Направления ЭДС определяют, задаваясь направлением вращения якоря считая, что полюсы находятся над обмоткой. Важным моментом здесь является расстановка щеток. Щетки на коллекторе располагаются на равном расстоянии по осям полюсов, как и в реальной машине. При этом щетки через коллекторные пластины соединяются с секциями обмотки, активные стороны которых находятся в межполюсных промежутках на линии «геометрической нейтрали». При сдвиге щеток с нейтрали ухудшаются характеристики машины, под щетками возникает сильное искрение, приводящее к разрушению щеток и оплавлению коллектора. Число щеток всегда равно числу полюсов. Ширина щетки для простых обмоток должна быть не менее ширины коллекторной пластины, bщ≥bщ. В многополюсных машинах щетки одинаковой полярности соединяются между собой сборными шинами или проводниками. Полярность щеток определяется по направлению ЭДС в активных сторонах секции. Если ЭДС стороны секции примыкающей к щетке, направлена к ней, то щетка имеет положительную полярность (+), если от нее – отрицательную (–). При рассмотрении простой петлевой обмотки видно, что она состоит из двух частей, с последовательным соединением секций, расположенных между щетками разной полярности, называемых параллельными ветвями обмотки. В одну ветвь входят секции, начальные стороны которых находятся под северным полюсом, а другую под южным (рисунок 1.17).
Рис. 17
Следовательно, в простой петлевой обмотке столько параллельных ветвей, сколько полюсов,
2а = 2р,
где а – число пар параллельных ветвей, ЭДС секций в параллельной ветви складываются.
Между щетками в разные моменты времени находятся различные секции, т.к. обмотка с коллектором при вращении непрерывно перемещается относительно щеток. Секции переходят из одной параллельной ветви в другую, поэтому общее число секций в параллельных ветвях и положение их в магнитном поле практически не меняется. Сумма ЭДС секций в параллельной ветви не меняется по величине и, следовательно, на щетках ЭДС неизменна.
Для большей наглядности обмотку якоря представляют в виде электрической схемы (рисунок 1.18), которая выполняется на основании развернутой схемы. Для изображения электрической схемы берут щетки и имеющие с ними
Рис. 18
контакт коллекторные пластины. Затем начинают обход секций обмоток, начиная с первой, и изображают их в виде отдельных витков, над которыми показывают направления индуктируемых ЭДС. Из электрической схемы видно, что обмотка (в нашем случае) состоит из 2–х параллельных ветвей (2а=2р=2) по
5 секций в каждой; ЭДС секций в пределах каждой параллельной ветви складывается; ЭДС на зажимах машины равна ЭДС одной параллельной ветви (Е = Еа); ток нагрузки (Iа) равен сумме токов параллельных ветвей (ia)
Секции 1 и 7 в рассматриваемый момент замкнуты через щетку накоротко и в создании ЭДС параллельных ветвей не участвуют. Это так называемые коммутируемые секции.
Сложная петлевая обмотка состоит из m простых обмоток, расположенных в пазах якоря одна в промежутках между другими. Для этого при образовании каждой петли обмотки необходимо оставлять место для других простых обмоток, т.е. шаг y2 должен отличаться на m от шага секции y1.
а шаг по коллектору и результирующий шаг равны
Следовательно, при образовании первой секции между коллекторными пластинами, к которым присоединяются концы секции, необходимо оставлять m=1 коллекторных пластин для других простых обмоток. На рисунке 1.19 показано образование сложной петлевой обмотки при m=2.
Сложная петлевая обмотка может быть однократно и многократно замкнутой. Чтобы все простые обмотки, составляющие сложную, были рабочими, ширина щетки принимается такой, чтобы она перекрывала не менее m коллекторных пластин. По отношению к внешней сети простые обмотки оказываются соединенными параллельно, поэтому сложная обмотка будет иметь число параллельных ветвей в m раз больше
2а = 2р·m
Расчет и построение схем сложных петлевых обмоток производится аналогично простым с учетом указанных особенностей.
+ называется обмотка, в которой последовательно соединяются секции, находящиеся под разными парами полюсов. При этом расстояние между коллекторными пластинами, к которым присоединяются концы секции (рисунок 1), примерно равно двойному полюсному делению
т.е. за один обход по якорю укладывается столько секций, сколько пар полюсов имеет машина. При этом конец последней по обходу секции присоединяют к коллекторной пластине, расположенной рядом с исходной слева или справа. В зависимости от этого обмотку называют левоходовой или правоходовой. Обычно применяют левоходовую обмотку.
Рисунок 1 - Простая волновая обмотка
За один обход перемещаются по коллектору на p·yк коллекторных делений. Следовательно,
(–) – для левоходовой обмотки;
(+) – для правоходовой обмотки.
Отсюда определяется шаг обмотки по коллектору
Продолжая в том же порядке укладывать секции, мы замкнем обмотку на исходной коллекторной пластине. Исходя из принципа соответствия хода обмотки по якорю и коллектору, результирующий шаг обмотки
Первый частичный шаг определяется по известной формуле
Определяем второй частичный шаг. Из рисунка 1
На рисунке 2 и 3 представлены развернутая и электрическая схема простой волновой обмотки с данными
Порядок построения: 1-й верхний проводник соединяется с 4-м нижним (у1=3), затем с 7-м верхним (у2=3) с 10 нижним 13 верхним и т. д.Соединия между секциями припаиваются к ближайшим коллекторным пластинам. Шаг по коллектору при этом получается ук=6. Как видим из схемы, ток в обмотке якоря разветвляется только по двум параллельным ветвям: первая ветвь – 12, 5, 11, 4 секции, вторая ветвь – I, 8, 2, 9 секции.
Рисунок 2 - развернута, схема простой волновой обмотки
Параллельная ветвь в волновых обмотках образуется из последовательно соединенных секций, лежащих под всеми полюсами машины. Число параллельных ветвей 2а у простой волновой обмотки независимо от числа полюсов машины равно 2, т.е. 2а=2.
Рисунок 3 - Электрическая схема простой волновой обмотки
Секции 6, 13, 7 и 10, 3 не участвуют в наведении ЭДС, так как они оказываются короткозамкнутыми (коммутируемыми) при данном положении якоря.
Простая волновая обмотка может быть выполнена только при определенном сочетании S и р. Например, при четном S и р результирующий шаг y не получается в виде целого числа. Для образования волновой обмотки в этом случае одну секцию, оставляя ее на якоре, не включают в общую схему. Такую обмотку называют волновой с «мёртвой» секцией.
3 Энергетическая диаграмма. Уравнение напряжений ДПТ НВ
32 Энергетическая диаграмма. Уравнение напряжений ГПТ НВ
Дата добавления: 2015-07-15; просмотров: 615 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Устройство и принцип действия МПТ. Характеристики МПТ НВ (ХХ, нагрузочная, регулировочная | | | Реакция якоря МПТ. Виды реакций якоря , влияние реакции якоря на магнитный поток |