Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Несобственные интегралы II рода

Читайте также:
  1. Интегралы от некоторых функций, содержащих квадратный трехчлен
  2. Интегралы от основных элементарных функций
  3. Интегралы от степеней тригонометрических функций
  4. Несобственные интегралы
  5. Несобственные интегралы.

Пусть определена на , терпит бесконечный разрыв в точке x=a и . Тогда:

1. Если , то используется обозначение и интеграл называется несобственным интегралом Римана второго рода. В этом случае интеграл называется сходящимся.

2. Если или , то обозначение сохраняется, а называется расходящимся к , или просто расходящимся.

Пусть определена на , терпит бесконечный разрыв при x=b и . Тогда:

1. Если , то используется обозначение и интеграл называется несобственным интегралом Римана второго рода. В этом случае интеграл называется сходящимся.

2. Если или , то обозначение сохраняется, а называется расходящимся к , или просто расходящимся.

Если функция терпит разрыв во внутренней точке отрезка , то несобственный интеграл второго рода определяется формулой:


Дата добавления: 2015-07-15; просмотров: 74 | Нарушение авторских прав


Читайте в этой же книге: Свойства неопределенного интеграла | Интегрирование по частям. | Интегрирование заменой переменной | Понятие определённого интеграла | Свойства определённого интеграла и формула Ньютона-Лейбница | Замена переменной в определенном интеграле | Вычисление площадей плоских фигур |
<== предыдущая страница | следующая страница ==>
Вычисление объёмов| И.Ю. АРТЕМЬЕВ

mybiblioteka.su - 2015-2024 год. (0.006 сек.)