Читайте также:
|
|
Пусть даны плоскости и . . Под углом между двумя плоскостями понимают один из двугранных углов, образованных этими плоскостями: . . Условие перпендикулярности: если В векторной форме: В координатной форме: Условие параллельности: если , то => (в векторной форме), (в координатной форме).
Общее уравнение прямой на плоскости и его исследование.
Для получения общего уравнения прямой на плоскости вспомним само уравнение плоскости: . Найдем линию пересечения плоскости с одной из координатных плоскостей, например с плоскостью x0y. Для этого решим систему: . – общее уравнение прямой на x0y. Исследуем это уравнение: 1) D=0: Ax+By=0 => – прямая проходит через начало координат. 2) B=0: Ax+D=0 => – параллельно 0y. 3) A=0: By+D=0 => – параллельно 0x. 4) A=D=0; By=0 => y=0 – ось x. 5) B=D=0, Ax=0 => x=0 – ось 0y.
Дата добавления: 2015-07-15; просмотров: 89 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Уравнение плоскости, проходящей через данную точку. | | | Угол между двумя прямыми на плоскости. Условие параллельности и перпендикулярности прямых. |