Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Математический маятник

Читайте также:
  1. V. Экономико-математический метод
  2. Б) Частота колебаний физического маятника.
  3. Базовые знания по модулю ЕН.01.М.02 Введение в математический анализ
  4. Глава II. Маятники
  5. Задание 2. Определение частоты затухающих колебаний пружинного маятника и коэффициента затухания.
  6. Задание 3. Изучение вынужденных колебаний пружинного маятника.
  7. ИЗМЕРЕНИЯ. Длину маятника l определяют суммируя измеренное рулеткой расстояние от точки подвеса до шарика и радмус шарика (определяемый при помощи штангенциркуля).

В качестве примера гармонических колебаний рассмотрим малые колебания математического маятника - материальной точки массой m, подвешенной на невесомой и нерастяжимой нити длинной l в поле тяжести Земли. Когда маятник висит вертикально, сумма сил действующих на частицу (силы тяжести, действующая со стороны Земли, mg, и силы натяжения нити )

= 0 (30)

т.е. частица массы m находится в равновесии.

Сместим частицу m из положения равновесия по дуге окружности радиуса l на величину

α = l θ, (31)

где θ – угол отклонения нити (в радианах) (рис.4а). При этом сила тяжести останется без изменений, в то время как сила натяжения нити изменяется не только по направлению, но и по величине, в итоге результирующая сила , действующая на частицу, станет отличной от нуля и будет направлена к положению равновесия (т.е. эта сила возвращающая, восстанавливающая, а положение равновесия устойчивое). Из рис. 4а видно, что

 

Fx = - mg sin θ (32)

или, используя (31),

Fx = - mg sin (x/l) (33)

Из (33) следует, что возвращающая сила Fx зависит от x по нелинейному закону. Следовательно, колебания математического маятника в общем случае не являются гармоническими. Однако, в случае малых колебаний, когда выполняется условие x << l, отношение x/l << 1 и и sin (x/l) tg (x/l) x/l. Поэтому при малых колебаниях возвращающая сила

Fx = - mg (34)

линейно зависит от x, причем коэффициент возвращающей силы

k = . (35)

Таким образом, при малых смещениях от положения равновесия математический маятник колеблется по гармоническому закону

x(t) = A cos(ω0t + α)

 

с частотой

ω0 = = (36)

и периодом

T = = 2π . (37)

Отметим, что длина маятника с периодом колебаний T0 = 1 с (для стандартного значения ускорения свободного падения вблизи поверхности Земли g0 = 9,81 м/с2) равна 24,8 см.

Если маятник находится в глубокой шахте на глубине h или на вершине горы высотой h (не на борту спутника), то его период колебаний будет определяться ускорением свободного падения в месте нахождения маятника. Если не учитывать вращение Земли и воспользоваться выражениями для g в шахте на глубине h, то получим, что на этой глубине

 

T = 2π (38)

 

(где T0 – его период колебаний на поверхности Земли и R3 – радиус Земли), а на высоте h

 

T = 2π > Т0 . (39)

 

Отметим, что в случае, когда глубина шахты h << R3, стоящий в (38) сомножитель 1/ можно приближенно заменить на (1 + h/2R3). В этом случае период колебаний маятника

 

T T0 (40)

 

Рассмотрим теперь вопрос о том, как изменяется колебательное движение математического маятника, если на материальную точку, кроме силы тяжести, действует еще постоянная внешняя си

Рис.4а. Математический маятник и действующие на него силы

 

Рис.4б. Математический маятник под действием сторонней силы

 

ла (например, сила Архимеда, когда маятник движется в жид- кости).

В положении равновесия равнодействующая всех сил, действующих на частицу

 

= 0 (41)

 

Из (41), в частности, следует, что в положении равновесия векторы (вертикаль), (нить) и лежат в одной плоскости.

Соотношение (41) можно записать в виде

 

(42)

где

(43)

т.е. в этом случае нить маятника в положении равновесия не вертикальна, а расположена вдоль вектора . Обратим внимание, что условие равновесия (42) формально совпадает с (30) с той лишь разницей, что в (30) стоит , а в (42) - . Поэтому, все формулы, написанные после (30) и относящиеся к выражению периода колебания математического маятника, остаются в силе и в нашем случае, если в них заменить , на . Таким образом, при действии на маятник постоянной силы он будет совершать малые гармонические колебания около положения равновесия, в котором нить расположена вдоль вектора , с частотой

ω0 = (44)

и периодом

T = 2π , (45)

где

gэфф = (46)

- абсолютное значение (модуль) вектора .

Полученные выше результаты можно использовать при рассмотрении задачи о гармонических колебаниях математического маятника, когда его точка подвеса движется относительно Земли с постоянным ускорением . Для этого перейдем в неинерциальную систему отсчета, связанную с точкой подвеса. Как известно, закон движения материальной точки (второй закон Ньютона) в неинерциальной системе отсчета совпадает с законом движения ее в инерциальной системе отсчета, если считать, что на эту точку, кроме реальных сил, действует также фиктивная сила инерции . На основании этого можно заключить, что в случае, когда точка подвеса математического маятника движется с постоянным ускорением , маятник может совершать малые гармонические колебания около положения устойчивого равновесия, в котором нить маятника расположена вдоль вектора

= (47)

с частотой (44) и периодом (45), где

gэфф = .

 

Задача 1. Самолет стартует под углом α к горизонту с ускорением а (рис.5). Найти частоту малых колебаний математического маятника длины l,подвешенного в самолете.

Решение

Найдем эквивалентное ускорение g¢ обусловленное инерционными силами и силой тяжести (рис. 5). Из чертежа, используя теорему косинусов, имеем:

(g¢')2 = а2 + g2 + 2аg sin α. (48)

 

Далее используем соотношение ω2 = g1 /l.

 

 

 

Рис. 5. Векторы сил и ускорений (к задаче 1)


Дата добавления: 2015-07-18; просмотров: 198 | Нарушение авторских прав


Читайте в этой же книге: Введение | Требования к выполнению курсового проекта (работы) | Исходные положения. Теория и типовые задачи в пояснительной записке | Колебания в электрических цепях | Колебания в электростатическом поле | Колебания в магнитном поле | Задача 9. | Вынужденные колебания. Резонанс | Рекомендации по решению задач | Сложение колебаний |
<== предыдущая страница | следующая страница ==>
Гармонические колебания| Пружинный маятник

mybiblioteka.su - 2015-2024 год. (0.013 сек.)