Читайте также:
|
|
Связав энтропию с динамической системой, мы тем самым возвращаемся к концепции Больцмана: вероятность достигает максимума в состоянии равновесия. Структурные единицы, которые мы используем при описании термодинамической эволюции, в состоянии равновесия ведут себя хаотически. В отличие от этого в слабо неравновесных условиях возникают корреляции и когерентность.
Здесь мы подходим к одному из наших главных выводов: на всех уровнях, будь то уровень макроскопической физики, уровень флуктуаций или микроскопический уровень, источником порядка является неравновесность. Неравновесность есть то, что порождает «порядок из хаоса». Но, как мы уже упоминали, понятие порядка (или беспорядка) сложнее, чем можно было бы думать. Лишь в предельных случаях, например в разреженных газах, оно обретает простой смысл в соответствии с пионерскими трудами Больцмана.
Сравним еще раз динамическое описание физического мира с помощью сил и полей и термодинамическое описание. Как уже упоминалось, нетрудно составить программы численных экспериментов, в которых взаимодействующие частицы, первоначально распределенные случайным образом, в некоторый момент времени располагаются в узлах правильной решетки. Динамическая интерпретация этого явления гласит: возникновение порядка обусловлено игрой сил взаимодействия между частицами. Термодинамическая интерпретация утверждает иное: наблюдается общая тенденция к установлению хаоса (система изолирована), но хаоса, проявляющегося в совершенно других структурных единицах (в рассматриваемой модели это — коллективные моды, охватывающие большое число частиц). В этой связи, по-видимому, уместно напомнить неологизм, введенный нами в гл. 6 для обозначения новых структурных единиц, которые ведут себя некогерентно, несогласованно в состоянии равновесия системы; мы назвали их «гипнонами», или «сомнамбулами», поскольку в состоянии равновесия они движутся как во сне, «не замечая» друг друга. Каждый из гипнонов может обладать сколь угодно сложной структурой (достаточно вспомнить о том, насколько сложны молекулы ферментов), но в состоянии
равновесия их сложность обращена «внутрь» и никак не проявляется «снаружи». Например, внутри молекулы существует интенсивное электрическое поле, но в разреженном газе этим полем можно пренебречь: оно никак не сказывается на поведении других молекул.
Одним из главных предметов исследования в современной физике является проблема элементарных частиц. Известно, что элементарные частицы далеко не элементарны. По мере того как мы поднимаемся по шкале энергий, перед нами открываются все новые и новые «слои» в структуре элементарных частиц. Но что такое элементарная частица? Можно ли считать, например, что планета Земля — элементарная частица? Разумеется, нельзя, потому что часть энергии Земли приходится на ее взаимодействие с Солнцем, Луной и другими планетами. Понятие же элементарной частицы подразумевает «автономию», с трудом поддающуюся описанию с помощью обычных понятий. Взять, например, хотя бы электроны и фотоны. При рассмотрении их мы сталкиваемся с дилеммой: либо отдельные частицы не существуют (часть энергии «обобществлена» электронами и фотонами, т. е. приходится на коллективные моды системы электронов и протонов), либо, если исключить взаимодействие, существуют свободные (не взаимодействующие) электроны и фотоны. Даже если бы мы знали, как можно каждую частицу заэкранировать от других, исключение взаимодействия представляется слишком радикальной мерой. Электроны поглощают или испускают фотоны. Выход из создавшегося затруднения мог бы состоять в переходе к физике процессов. В этом случае структурные единицы (элементарные частицы) соответствовали бы определению гипнонов, так как в состоянии равновесия они ведут себя независимо. Мы надеемся, что наша гипотеза вскоре получит экспериментальное подтверждение. Особенно подкрепило бы ее обнаружение стрелы времени, выражающей глобальную эволюцию природы, непосредственно во взаимодействии атомов с фотонами (или другими нестабильными элементарными частицами).
Широко обсуждается в современной науке и проблема космической эволюции. Каким образом мир мог быть столь «упорядоченным» на первых этапах эволюции после большого взрыва? Тем не менее порядок необходим, если мы хотим понять космическую эволюцию
как постепенное движение от порядка к хаосу.
Для удовлетворительного решения проблемы нам необходимо знать, адекватны ли гипноны экстремальным условиям с колоссальными температурами и плотностью материи, характерными для ранних этапов развития Вселенной. Разумеется, одной термодинамике не под силу решить эти проблемы, как не в силах решить их и одна динамика, даже в высшей своей форме — теории поля. Именно поэтому объединение динамики и термодинамики открывает новые перспективы. Независимо от всяких прогнозов нельзя не удивляться разительным переменам, происшедшим в естествознании с тех пор, как было сформулировано второе начало (т. е. за какие-нибудь сто пятьдесят лет). Сначала физикам казалось, будто атомистические представления противоречат понятию энтропии. Больцман пытался спасти механистическое мировоззрение ценой сведения второго начала к вероятностному утверждению, весьма важному для практических приложений, но не имеющему фундаментального значения. Мы не знаем, каким будет окончательное решение, но современная ситуация коренным образом отличается от ситуации полуторавековой давности. Материя теперь не есть нечто данное. В современной теории она «конструируется» из более элементарного понятия в терминах квантованных полей. В этом конструировании важная роль отводится термодинамическим понятиям (необратимости, энтропии)*.
Подведем итоги достигнутого. В первой и второй части нашей книги неоднократно подчеркивалось, что на уровне макроскопических систем первостепенное значение имеет второе начало (и связанное с ним понятие необратимости).
В третьей части мы стремились показать, что в настоящее время открывается возможность выхода за рамки макроскопического уровня, и продемонстрировать, что означает необратимость на микроскопическом уровне.
Переход от макроскопического уровня к микроскопическому требует коренного пересмотра наших взглядов на фундаментальные законы физики. Только полностью избавившись от классических представлений
* Речь, очевидно, идет о понятии материи в специально научном, физическом, а не философском смысле. — Прим. перев.
(как в случае достаточно нестабильных систем), мы можем говорить о «внутренней случайности» и «внутренней необратимости».
Для таких систем мы можем ввести новое расширенное описание времени с помощью оператора Т. Как было показано на примере «преобразования пекаря» (гл. 9 «От случайности к необратимости»), этот оператор имеет в качестве собственных функций разбиения фазового пространства (см. рис. 39).
Таким образом, ситуация, с которой мы сталкиваемся, очень напоминает ситуацию, сложившуюся в квантовой механике. Существуют два возможных описания: либо мы выбираем точку в фазовом пространстве и тогда не знаем, какому разбиению она принадлежит и, следовательно, каков ее внутренний возраст, либо мы знаем внутренний возраст, но тогда нам известно только разбиение, а не точная локализация точки.
После того как мы ввели внутреннее время Т, энтропию можно использовать как принцип отбора для перехода от начального описания с помощью функции распределения r к новому описанию с помощью функции распределения r^ [1], которая обладает внутренней стрелой времени, согласующейся со вторым началом термодинамики. Основное различие между r и r^проявляется в разложениях этих функций по собственным функциям оператора Т (см. гл. 7 «Рождение квантовой механики»). В функцию r все внутренние возрасты независимо от того, принадлежат ли они прошлому или будущему, входят симметрично. В функции r^ в отличие от r прошлое и будущее играют различные роли: прошлое входит в r^, а будущее остается неопределенным. Асимметрия прошлого и будущего означает, что существует стрела времени. Новое описание обладает важной особенностью, заслуживающей того, чтобы ее отметить: начальные условия и законы изменения перестают быть независимыми. Состояние со стрелой времени возникает под действием закона, также наделенного стрелой времени и трансформирующего состояние, но сохраняющего стрелу времени.
В нашей книге мы рассматривали главным образом классическую ситуацию20. Но все сказанное применимо и к квантовой механике, в которой ситуация несколько сложнее, поскольку существование постоянной Планка
лишает смысла понятие траектории и тем самым приводит к своего рода делокализации в фазовом пространстве. Таким образом, квантовомеханическая делокализация накладывается на делокализацию, вызванную необратимостью.
В гл. 7 мы подчеркивали, что две великие революции в физике XX в. связаны с включением в фундаментальную структуру физики двух запретов, чуждых классической механике: невозможности распространения сигналов со скоростью больше скорости света и невозможности одновременного измерения координат и импульса.
Неудивительно, что и второе начало, также ограничивающее наши возможности активного воздействия на материю, приводит к глубоким изменениям в структуре основных законов физики.
Нам бы хотелось закончить третью часть нашей книги предостережением. Феноменологическую теорию необратимых процессов ныне можно считать вполне сложившейся. В отличие от нее микроскопическая теория необратимых процессов делает лишь первые шаги. Когда читалась верстка этой книги, в нескольких лабораториях подготавливались эксперименты для проверки правильности микроскопической теории. Пока эти эксперименты не будут выполнены, умозрительный элемент в новой теории неизбежен.
Дата добавления: 2015-07-15; просмотров: 99 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Энтропия как принцип отбора | | | Открытая наука |