Читайте также:
|
|
Мы уже упоминали о том, что траектории несовместимы с понятием необратимости. Но поведение траекторий — отнюдь не единственный язык, на котором мы
можем сформулировать динамику. В качестве альтернативы сошлемся на теорию ансамблей, развитую Гиббсом и Эйнштейном7,18 и представляющую особый интерес при изучении систем, состоящих из большого числа молекул. Существенно новым элементом в теории ансамблей Гиббса—Эйнштейна явилась возможность сформулировать динамическую теорию независимо от точного задания каких бы то ни было начальных условий.
В теории ансамблей физические системы рассматриваются в фазовом пространстве. Динамическое состояние точечной частицы (материальной точки) определяется ее положением (вектором с тремя компонентами) и импульсом (тоже вектором с тремя компонентами). Такое состояние можно представить двумя точками (каждая из которых принадлежит «своему» трехмерному пространству) или одной точкой в шестимерном пространстве координат и импульсов. Это и есть фазовое пространство. Геометрическое представление динамических состояний одной точечной частицы обобщается на случай произвольной системы п частиц. Для того чтобы задать состояние такой системы, необходимо указать n r6 чисел, или точку в 6 n -мерном фазовом пространстве. Эволюции во времени системы п частиц будет соответствовать траектория в фазовом пространстве.
Мы уже говорили о том, что точные начальные условия макроскопической системы никогда не известны. Однако ничто не мешает нам представить систему ансамблем точек, т. е. «облаком» точек, соответствующих различным динамическим состояниям, совместимым с той информацией о системе, которой мы располагаем. Каждая область фазового пространства может содержать бесконечно много представляющих точек. Их плотность служит мерой вероятности найти рассматриваемую систему в данной области. Вместо того чтобы рассматривать бесконечно много дискретных точек, удобнее ввести непрерывное распределение представляющих точек в фазовом пространстве. Пусть r(q 1,..., q 3n, p 1 ,..., p 3n ) — плотность распределения представляющих точек в фазовом пространстве, где q 1,..., q 3n — координаты п точек, a p 1 ,..., p 3n — импульсы тех же точек (каждая точка имеет три координаты и три импульса). Плотность r есть плотность вероятности найти динами-
ческую систему в окрестности точки q 1,..., q 3n, p 1 ,..., p 3n фазового пространства.
При таком подходе плотность r может показаться идеализацией, искусственной конструкцией, а траектория точки в фазовом пространстве «непосредственно» соответствующей описанию «естественного» поведения системы. Но в действительности идеализацией является точка, а не плотность. Дело в том, что начальное состояние никогда не бывает известно с бесконечной степенью точности, позволяющей стянуть область в фазовом пространстве в отдельную точку. Мы можем лишь определить ансамбль траекторий, выходящих из ансамбля представляющих точек, соответствующих тому, что нам известно относительно начального состояния системы. Функция плотности r отражает уровень наших знаний о системе: чем точнее знания, тем меньше область в фазовом пространстве, на которой плотность отлична от нуля, т. е. та область, где может находиться система. Если бы плотность была равномерно распределена по всему фазовому пространству, то утверждать что-либо относительно состояния системы было бы невозможно. Она могла бы находиться в любом из состояний, совместимых с ее динамической структурой.
При таком подходе точка соответствует максимуму знания, которым мы можем располагать о системе. Такой максимум есть результат предельного перехода, все возрастающей точности нашего знания. Как мы увидим в гл. 9, фундаментальная проблема состоит в том, чтобы выяснить, какой предельный переход реально осуществим. Непрестанное повышение точности означает, что от одной области в фазовом пространстве, где плотность r отлична от нуля, мы переходим к другой, меньшей, которая содержится в первой. Такое стягивание мы можем продолжать до тех пор, пока область, содержащая систему, не станет сколь угодно малой. Но при этом, как мы увидим в дальнейшем, необходимо соблюдать осторожность: «сколь угодно малая» не означает «нулевая», и априори ниоткуда не следует, что наш предельный переход непременно приведет к непротиворечивому предсказанию отдельной однозначно определенной траектории.
Теория ансамблей Гиббса—Эйнштейна — естественное продолжение теории Больцмана. Функцию плотности r в фазовом пространстве можно рассматривать
как аналог функции распределения скоростей f, которую использовал Больцман. Но по своему физическому содержанию PPP «богаче», чем f. Функция плотности r так же, как и f, определяет распределение скоростей, но, помимо этого, r содержит и другую информацию, в частности вероятность найти две частицы на определенном расстоянии друг от друга. В функцию плотности PPP входит и все необходимое для определения корреляций между частицами, о которых шла речь в предыдущем разделе. Более того, r содержит полную информацию о всех статистических свойствах системы п тел.
Опишем теперь эволюцию функции плотности в фазовом пространстве. На первый взгляд это еще более дерзкая задача, чем та, которую поставил перед собой Больцман: описание временной эволюции функции распределения скоростей. Но это не так. Канонические уравнения Гамильтона, о которых шла речь в гл. 2, позволяют нам получить точное эволюционное уравнение для r без дальнейших приближений. Это так называемое уравнение Лиувилля, к которому мы еще вернемся в гл. 9. Пока же отметим лишь одно важное следствие из гамильтоновой динамики: плотность r эволюционирует в фазовом пространстве как несжимаемая жидкость (если представляющие точки в какой-то момент времени занимают в фазовом пространстве область объемом V, то объем области остается постоянным во времени). Форма области может изменяться произвольно, но объем ее при всех деформациях сохраняется.
Таким образом, теория ансамблей Гиббса открывает возможность строгого сочетания статистического подхода (исследования «популяции», описываемой плотностью r) и законов динамики. Она допускает также более точное представление состояния термодинамического равновесия. Например, в случае изолированной системы ансамбль представляющих точек соответствует системам с одной и той же энергией Е. Плотность r отлична от нуля только на микроканонической поверхности в фазовом пространстве, отвечающей заданному значению энергии. Первоначально плотность r может быть распределена по микроканонической поверхности произвольно. В состоянии равновесия плотность r перестает изменяться во времени и не должна зависеть от выбора начального состояния. Следовательно, при-
Рис. 28. Временнáя эволюция в фазовом пространстве «объема», содержащего представляющие точки системы: величина объема остается неизменной, а форма искажается. Положение в фазовом пространстве задается координатой q и импульсом р.
ближение к равновесному состоянию имеет простой смысл в терминах эволюции плотности r: функция распределения r становится постоянной на всей микроканонической поверхности. Каждая точка такой поверхности с равной вероятностью может представлять систему. Это соответствует микроканоническому ансамблю.
Приближает ли теория ансамблей хоть сколько-нибудь к решению проблемы необратимости? Теория Больцмана описывает термодинамическую энтропию с помощью функции распределения скоростей f. Для этого Больцману пришлось ввести свою H-функцию. Как мы уже знаем, система эволюционирует во времени до тех пор, пока распределение скоростей не становится максвелловским, и на протяжении всей эволюции H функция монотонно убывает. Можно ли теперь в более общем плане принять за основу возрастания энтропии эволюцию распределения r в фазовом пространстве к микроканоническому ансамблю? Достаточно ли для этого вместо больцмановской функции H, выраженной через f, взять гиббсовскую функциюHG, зависящую точно таким же образом от r? К сожалению, ответы на оба вопроса отрицательны. Если мы рассмотрим уравнение Лиувилля, описывающее эволюцию плотности r в фазовом пространстве, и учтем сохранение объема «фазовой жидкости», о котором уже упомина-
лось, то вывод последует незамедлительно: функция HG постоянна и поэтому не может быть аналогом энтропии. По отношению к теории Больцмана последнее обстоятельство кажется не столько продвижением вперед, сколько шагом назад!
Несмотря на этот негативный аспект, вывод Гиббса остается весьма важным. Мы уже неоднократно отмечали расплывчатость и. неоднозначность понятий порядка и хаоса. Постоянство функции HG свидетельствует о том, что в рамках динамической теории не существует никакого изменения порядка! «Информация», выражаемая функцией HG, остается постоянной. Сохранение информации можно понимать следующим образом: столкновения порождают корреляции. В результате столкновений скорости рандомизируются, становятся случайными, что позволяет нам описывать весь процесс как переход от порядка к хаосу. Вместе с тем появление корреляции в результате столкновений свидетельствует об обратном процессе: о переходе от хаоса к порядку! Теория Гиббса показывает, что оба процесса — прямой и обратный — в точности компенсируют друг друга.
Итак, мы приходим к важному выводу: независимо от выбора представления (будь то движение по траекториям или теория ансамблей Гиббса—Эйнштейна) нам не удастся построить теорию необратимых процессов, которая выполнялась бы для любой системы, удовлетворяющей законам классической (или квантовой) механики. У нас нет даже способа говорить о переходе от порядка к хаосу! Как следует понимать эти отрицательные результаты? Любая ли теория необратимых процессов находится в неразрешимом конфликте с механикой (классической или квантовой)? Нередко высказывалось предложение включить космологические члены, которые учитывали бы влияние расширяющейся Вселенной на уравнения движения и порождали бы стрелу времени. С подобной идеей трудно согласиться. С одной стороны, не вполне ясно, как вводить эти космологические члены. С другой стороны, точные динамические эксперименты, по-видимому, отвергают существование космологических членов, по крайней мере если говорить о земных масштабах, которые мы и рассматриваем в данном случае (достаточно вспомнить о прецизионных космических экспериментах, поставленных
с помощью искусственных спутников Земли и подтвердивших с высокой точностью уравнения Ньютона). Вместе с тем, как уже неоднократно подчеркивалось, мы живем в плюралистическом мире, в котором обратимые и необратимые процессы сосуществуют в одной и той же расширяющейся Вселенной.
Еще более радикальный вывод состоит в том, чтобы встать на точку зрения Эйнштейна и считать время как необратимость иллюзией, которая никогда не найдет себе места в объективном мире физики. К счастью, существует другой выход, который мы подробно рассмотрим в гл. 9. Необратимость, как мы неоднократно отмечали, не является универсальным свойством, а это означает, что не следует ожидать общего вывода необратимости из динамики.
Теория ансамблей Гиббса вводит лишь один дополнительный, но очень важный элемент по сравнению с динамикой траекторий: наше незнание точных начальных условий. Маловероятно, чтобы одно лишь это незнание приводило к необратимости.
Таким образом, не следует удивляться, что нас постигла неудача. Ведь мы так и не сформулировали те специфические особенности, которыми должна обладать динамическая система для того, чтобы приводить к необратимым процессам.
Почему так много ученых с готовностью приняли субъективную интерпретацию необратимости? Возможно, привлекательность субъективной интерпретации отчасти объясняется тем, что, как мы знаем, необратимое возрастание энтропии сначала связывалось с несовершенством манипуляций, производимых над системой, и неполнотой нашего контроля над идеально обратимыми операциями.
Но субъективная интерпретация становится явно абсурдной, если мы оставляем в стороне малосущественные ассоциации с технологическими проблемами. Не следует забывать также о том историческом контексте, в котором второе начало термодинамики обрело интерпретацию стрелы времени. Если принять субъективную интерпретацию, то химическое сродство, теплопроводность, вязкость, т. е. все свойства, связанные с необратимым производством энтропии, окажутся зависимыми от наблюдателя. Кроме того, та роль, которую играют в биологии явления организации, связан-
ные с необратимостью, не позволяет считать их простыми иллюзиями, обусловленными нашим незнанием. Разве мы сами, живые существа, способные наблюдать и производить манипуляции, — не более чем фикции, вызванные несовершенством наших органов чувств? Разве различие между жизнью и смертью — иллюзия?
Таким образом, последние достижения термодинамической теории увеличили остроту конфликта между динамикой и термодинамикой. Попытки свести результаты термодинамики к аппроксимациям, обусловленным несовершенством нашего знания, оказались несостоятельными, когда была понята конструктивная роль энтропии и открыта возможность усиления флуктуаций. Наоборот, динамику трудно отвергнуть во имя необратимости: в движении идеального маятника нет никакой необратимости. Существование двух конфликтующих миров — мира траекторий и мира процессов — не вызывает сомнений. Мы не можем отрицать существование одного из них, утверждая существование другого.
В какой-то степени имеется определенная аналогия между этим конфликтом и тем, с которым связано зарождение диалектического материализма. В гл. 5 и 6 мы описали природу, которую можно было бы назвать «исторической», т. е. способной к развитию и инновации. Идея истории природы как неотъемлемой составной части материализма принадлежит К. Марксу и была более подробно развита Ф. Энгельсом. Таким образом, последние события в физике, в частности открытие конструктивной роли необратимости, поставили в естественных науках вопрос, который давно задавали материалисты. Для них понимание природы означало понимание ее как способной порождать человека и человеческое общество.
Кроме того, в то время, когда Энгельс писал «Диалектику природы», физические науки отвергали механистическое мировоззрение и склонялись ближе к идее исторического развития природы. Энгельс упоминает три фундаментальных открытия: энергии и законов, уп-равляющих ее качественными преобразованиями; клетки как основы всех органических существ и открытие Дарвином эволюции видов. Исходя из этих трех великих открытий, Энгельс пришел к выводу, что механистическое мировоззрение мертво. Вместе с тем механицизм ставил перед диалектическим материализмом ряд
принципиальных и далеко не простых вопросов. Каковы соотношения между общими законами диалектики и столь же универсальными законами механического движения? Становятся ли последние неприменимыми после того, как достигнута определенная стадия развития, или же они просто неверны или неполны? Нельзя еще раз не задать и наш предыдущий вопрос: как вообще могут быть связаны между собой мир процессов и мир траекторий19?
Но сколь ни легко критиковать субъективную интерпретацию необратимости и отмечать еe слабые стороны, выйти за ее рамки и сформулировать «объективную» теорию необратимых процессов необычайно трудно. В истории попыток создания этого предмета звучат и трагические ноты. Многие склонны считать, что именно отчетливое понимание принципиальных трудностей, стоящих на пути к созданию объективной теории необратимых процессов и казавшихся непреодолимыми, привело Больцмана в 1906 г. к самоубийству.
Дата добавления: 2015-07-15; просмотров: 92 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Критика больцмановской интерпретации | | | Больцман и стрела времени |