Читайте также: |
|
Две научные революции, описанные в этой главе, начались с попыток включить в общую схему классической механики универсальные постоянные с и h. Это повлекло за собой далеко идущие последствия, частично описанные выше. Вместе с том нельзя не отметить, что другие аспекты теории относительности и квантовой механики свидетельствуют об их принадлежности к мировоззрению, лежащему в основе ньютоновской механики. В особенности это относится к роли и значению времени. Коль скоро в квантовой механике волновая функция известна в нулевой момент времени, ее значение ψ (t) определено в любой момент времени t, как в прошлом, так и в будущем. Аналогичным образом в теории относительности статический, геометрический характер времени часто подчеркивается использованием четырехмерных обозначений (трех пространственных измерений и одного временного). Как точно заметил Минковский в 1908 г., «отныне пространство само по себе и время само по себе должны обратиться в фикции и лишь некоторый вид соединения обоих должен еще сохранить самостоятельность»13.
Но за последние пятьдесят лет ситуация резко изменилась. Квантовая теория стала основным средством при рассмотрении элементарных частиц и их превращений. Описание фантастического многообразия элементарных частиц, обнаруженных за последние годы, увело бы нас далеко в сторону от нашей основной темы.
Напомним лишь, что, опираясь на квантовую механику и теорию относительности, Дирак предсказал существование античастиц: каждой частице с массой m и зарядом е соответствует античастица с массой m и зарядом противоположного знака. Предвидение Дирака подтвердилось: к настоящему времени на ускорителях высоких энергий получены позитроны (античастицы электронов), антипротоны. Антиматерия стала обычным предметом исследования в физике элементарных частиц. При столкновении частицы и античастицы аннигилируют с выделением фотонов — безмассовых частиц света. Уравнения квантовой теории симметричны относительно замены частицы — античастицы или, точнее, относительно более слабого требования, известного под названием СРТ-симметрии. Несмотря на СРТ-симмет-
рию, между частицами и античастицами в окружающем нас мире существует замечательная дисимметрия. Мы состоим из частиц (электронов, протонов). Что же касается античастиц, то они остаются своего рода лабораторными «раритетами». Если бы частицы и античастицы сосуществовали в равных количествах, то все вещество аннигилировало бы. Имеются веские основания полагать, что в нашей Галактике антиматерия не существует, но не исключено, что она существует в других галактиках. Можно представить себе, что во Вселенной действует некий механизм, разделяющий частицы и античастицы и «прячущий» последние где-то далеко от нас. Однако более вероятно, что мы живем в несимметричной Вселенной, в которой материя преобладает над антиматерией.
Как такое возможно? Модель, объясняющая наблюдаемую ситуацию, была предложена А. Д. Сахаровым в 1966 г.14 В настоящее время проблема отсутствия симметрии в распределении материи и антиматерии усиленно разрабатывается. Существенным элементом современного подхода является утверждение о том, что в момент образования материи Вселенная должна была находиться в неравновесных условиях, поскольку в состоянии равновесия из закона действия масс, о котором шла речь в гл. 5, следовало бы количественное равенство материи и антиматерии.
В этой связи мы хотели бы подчеркнуть, что неравновесность обретает ныне новое, космологическое измерение. Без неравновесности и связанных с ней необратимых процессов Вселенная имела бы совершенно иную структуру. Материя нигде не встречалась бы в заметных количествах. Повсюду наблюдались бы лишь флуктуации, приводящие к локальным избыткам то материи, то антиматерии.
Из механистической теории, модифицированной с учетом существования универсальной постоянной h, квантовая теория превратилась в теорию взаимопревращений элементарных частиц. В ходе предпринятых в последнее время попыток построить единую теорию элементарных частиц высказывалась гипотеза о том, что все элементарные частицы материи, включая протон, нестабильны (правда, время жизни протона достигает коллосальной величины — 1030 лет). Механика, наука о движении, вместо того чтобы соответствовать
фундаментальному уровню описания, низводится до роли приближения, годного лишь вследствие огромного времени жизни таких элементарных частиц, как протоны.
Аналогичным трансформациям подверглась и теория относительности. Как мы уже упоминали, теория относительности начинала как геометрическая теория, сильно акцентировавшая свой безвременной характер. Ныне теория относительности является основным инструментом исследования тепловой истории Вселенной, позволяющим раскрыть те механизмы, которые привели к наблюдаемой ныне структуре Вселенной. Тем самым обрела новое звучание проблема времени, необратимости. Из области инженерии, прикладной химии, где она была сформулирована впервые, проблема необратимости распространилась на всю физику — от теории элементарных частиц до космологии.
Если к оценке квантовой механики подходить, имея в виду главную тему нашей книги, то основной заслугой ее следует считать введение вероятности в физику микромира. Вероятность, о которой идет речь, не следует путать со стохастическими процессами, описывающими химические реакции (о них мы рассказали в гл. 5). В квантовой механике волновая функция эволюционирует во времени детерминистическим образом, за исключением тех моментов, когда над квантовой системой производится измерение.
Мы видим, что за пятьдесят лет, прошедших со времени создания квантовой механики, исследования неравновесных процессов показали, что флуктуация, стохастические элементы важны даже в микроскопическом масштабе. На страницах нашей книги мы уже неоднократно говорили о том, что продолжающееся ныне концептуальное перевооружение физики ведет от детерминистических обратимых процессов к процессам стохастическим и необратимым. Мы считаем, что в этом процессе квантовая механика занимает своего рода промежуточную позицию: она вводит вероятность, но не необратимость. Мы ожидаем (и в гл. 9 будут приведены некоторые основания для этого), что следующим шагом будет введение фундаментальной необратимости на микроскопическом уровне. В отличие от попыток восстановить классическую ортодоксальность с помощью скрытых переменных мы считаем, что необходимо еще дальше отойти от детерминистических описаний и принять статистическое, стохастическое описание.
Дата добавления: 2015-07-15; просмотров: 105 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Временная эволюция квантовых систем | | | Вероятность и необратимость |