Читайте также:
|
|
Начнем с классической механики. Как мы уже упоминали, если основным первичным элементом считать траекторию, то мир был бы таким же обратимым, как и те траектории, из которых он состоит. В «тра-екторном» описании нет места ни энтропии, ни стреле времени. Но в результате непредвиденного развития событий применимость понятия траектории оказалась более ограниченной, чем мож-
но было бы ожидать. Вернемся к теории ансамблей Гиббса и Эйнштейна, о которой мы говорили в гл. 8. Как известно, Гиббс и Эйнштейн ввели в физику фазовое пространство для того, чтобы учесть наше «незнание» начального состояния системы большого числа частиц. Для Гиббса и Эйнштейна функция распределения в фазовом пространстве была лишь вспомогательным средством, выражающим незнание de facto ситуации, которая однозначно определена de jure. Но вся проблема предстает в новом свете, если можно показать, что для некоторых типов систем бесконечно точное определение начальных условий приводит к внутренне противоречивой процедуре. Но коль скоро это так, тот факт, что нам всегда известна не отдельная траектория, а группа (или ансамбль) траекторий, выражает уже не только ограниченность нашего знания — он становится исходным пунктом нового подхода к исследованию динамики.
В простейших случаях никакой проблемы не возникает. Рассмотрим в качестве примера маятник. В зависимости от начальных условий маятник может либо колебаться, либо вращаться вокруг точки подвеса. Для того чтобы маятник вращался, его кинетическая энергия должна быть достаточно велика, иначе он «упадет назад», так и не достигнув вертикального положения. Двум типам движения — колебаниям и вращениям — соответствуют две различные области фазового пространства. Причина, по которой эти области не пересекаются, весьма проста: для вращения необходим больший запас кинетической энергии, чем для колебания (см. рис. 30).
Если измерения позволяют установить, что система первоначально находится в заданной области, мы можем с полной уверенностью предсказать, будет ли маятник совершать колебания или вращаться вокруг точки подвеса. Повысив точность измерений, мы можем локализовать начальное состояние маятника в более узкой области, целиком лежащей внутри предыдущей. И в том, и в другом случае поведение системы известно при любых t: ничего нового или неожиданного случиться не может.
Одно из наиболее удивительных открытий XX в. состоит в том, что такого рода описание не соответствует поведению динамических систем в общем случае, по-
Рис. 30. Представление движения маятника в пространстве координат V и q, где V — скорость, q — угловое отклонение, а) Типичные траектории в пространстве (V, q); b) заштрихованные области соответствуют колебаниям, а области вне их — вращению маятника.
скольку «большинство» траекторий динамических систем неустойчиво6. Обозначим траектории одного типа (например, соответствующие «колебательным режимам») знаком +, а траектории другого типа (соответствующие «вращательным режимам») знаком Ú. Вместо картины, изображенной на рис. 30, где области колебательных и вращательных режимов разделены, мы получим в общем случае причудливую смесь состояний, что делает переход к отдельной точке весьма неоднозначным (см. рис. 31). Даже если известно, что начальное состояние нашей системы принадлежит области А, мы не можем заключить, что проходящая через него
Рис. 31. Схематическое изображение любой произвольно малой области фазового пространства V динамически неустойчивой системы. Как и в случае маятника, существуют траектории двух типов (обозначенные + и Ú), но, в отличие от маятника, траектории обоих типов встречаются в сколь угодно малой области.
траектория принадлежит типу +: траектория вполне может оказаться типа Ú. Увеличение точности измерений и связанный с ним переход от области А к более узкой области В также ничего не дает, так как неопределенность в типе траектории сохраняется. Во всех сколь угодно малых областях всегда существуют состояния, принадлежащие каждому из двух типов траекторий7.
Для таких систем траектории становятся ненаблюдаемыми. Неустойчивость свидетельствует о достижении пределов ньютоновской идеализации. Нарушается независимость двух основных элементов ньютоновской динамики: закона движения и начальных условий. Закон движения вступает в конфликт с детерминированностью начальных условий. В этой связи невольно вспоминается мысль Анаксагора о неисчерпаемости творческих возможностей частиц (семян), составляющих природу. По Анаксагору, любой предмет содержит в каждой своей части бесконечное множество качественно различных семян. В нашем случае любая об-
ласть фазового пространства содержит огромное множество качественно различных режимов поведения.
С этой точки зрения детерминистическая траектория применима лишь в ограниченных пределах. А поскольку не только на практике, но и в теории мы не можем описывать систему на языке траекторий и вынуждены, использовать функцию распределения, соответствующую конечной (сколь угодно малой) области фазового пространства, нам остается лишь предсказывать статистическое будущее системы,
Наш друг Леон Розенфельд имел обыкновение говорить, что понятия могут быть поняты лишь через их пределы. В этом смысле можно утверждать, что мы достигли ныне лучшего понимания классической меха-пики, создание которой проложило путь к современному естествознанию.
Как возникла новая точка зрения? Для того чтобы ответить на этот вопрос, нам придется описать те глубокие изменения, которые претерпела динамика в XX в. Хотя по традиции динамику принято считать архетипом полной, замкнутой отрасли знания, в действительности она подверглась коренным преобразованиям.
Дата добавления: 2015-07-15; просмотров: 60 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Необратимость как процесс нарушения симметрии | | | Возрождение динамики |