Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Линейное неоднородное дифференциальное уравнение второго порядка с постоянными ко­эффициентами

Читайте также:
  1. I. Дифференциальное уравнение вида
  2. II этап – знакомство с уравнением и овладение способом его решения.
  3. II. Дифференциальное уравнение вида
  4. II. Положительное согласование порядка и прогресса
  5. quot;ОБЕСПЕЧЕНИЕ ОБЩЕСТВЕННОГО ПОРЯДКА
  6. Вести первого и второго ангелов
  7. Виды рейсов и их характеристика. Уравнение времени рейса

Этот тип уравнений характеризуется наличием правой части, то есть имеет вид:

. (17)

 

Можно доказать, что общее решение уравнения (17) представляется в виде:

, (18)

где общее решение уравнения (17), а частное решение уравнения (17). Иными словами, общее решение линейного неоднородного уравнения есть сумма общего решения линейного однородного решения и одного из частных решений линейного неоднородного уравнения.

Отметим еще одно важное свойство решений линейных дифференциальных уравнений – принцип суперпозиции решений. Пусть правая часть линейного неоднородного дифференциального уравнения представляется в виде суммы двух (или более) функций:

 

. (19)

 

Тогда решение этого уравнения может быть представлено в виде , где и решения дифференциальных уравнений: и соответственно. Это означает, что, разбив правую часть линейного неоднородного дифференциального уравнения на сумму двух слагаемых, можно свести его решение к решению двух более простых дифференциальных уравнений.

Заметим, что при формулировке принципа суперпозиции решений не требуется постоянство коэффициентов. Кроме того, этот принцип справедлив и для дифференциальных уравнений более высокого порядка.

Рассмотрим линейное неоднородное дифференциальное уравнение второго порядка с постоянными ко­эффициентами (17), в котором правая часть имеет следующий вид:, где, постоянные числа,, многочлены порядка и.

Такие уравнения называют уравнениями со специальной правой частью, и для нахождения их частного решения можно применить метод Эйлера. Согласно этому методу, частное решение ищется в следующем виде:

 

. (20)

 

В правой части равенства (20) , а и многочлены степени с неопределенными коэффициентами (их число равно ). Степень множителя определяется по следующему правилу.

Если контрольное число (комплексное при не совпадает ни с одним из корней характеристического уравнения (18), то . Если контрольное число совпадает с одним из корней характеристического уравнения, то . Наконец, если контрольное число совпадает с корнем характеристического уравнения и этот корень кратный, то . Очевидно, что последний случай возможен только при , так как кратный корень может быть только вещественным.

Для определения неопределенных коэффициентов в многочленах и следует подставить выражение (20) в уравнение (17), предварительно найдя его производные и . Неопределенные коэффициенты находятся из системы линейных алгебраических уравнений, к которым сведется уравнение (17) после подстановки в него выражения (20).

Пример9. Решить дифференциальное уравнение: .

Решение. Характеристическое уравнение для однородного дифференциального уравнения имеет вид: . Его корни . Общее решение однородного уравнения записывается в форме: , где и произвольные постоянные.

Будем искать частное решение неоднородного уравнения в виде (20). По условиям примера Контрольное число равно единице и не совпадает с корнями характеристического уравнения. Поэтому Таким образом, формула (20) дает: . Найдем производные .

 

 

 

Подставим эти выражения в дифференциальное уравнение:

 

.

 

Сокращая обе части уравнения на и приводя подобные, получаем:

.

 

Последнее равенство должно выполняться для произвольных значений , что возможно лишь при выполнении следующих условий:

Решая систему уравнений, находим:

Следовательно, и общее решение рассматриваемого дифференциального уравнения принимает вид:

.

Пример10. Найти общее решение дифференциального уравнения: .

Решение. Характеристическое уравнение для однородного дифференциального уравнения имеет два комплексных корня: Общее решение однородного уравнения записывается в виде: , где и произвольные постоянные.

Найдем частное решение неоднородного уравнения. Заметим, что правая часть уравнения – сумма двух слагаемых, каждое из которых может быть представлено в виде (25). Поэтому, в соответствии с принципом суперпозиции решений, частное решение неоднородного уравнения будем искать в виде:

 

.

 

Найдем производные функции :

.

Подстановка этих выражений в исходное уравнение дает:

.

Выполнение этого уравнения при произвольных значениях возможно только в том случае, когда коэффициенты при функциях в левой и правой частях уравнения будут одинаковы. Это условие приводит к системе уравнений:

Ее решение: ; ; ; ; .

В окончательном виде получаем общее решение неоднородного дифференциального уравнения:

.

Рассмотрим еще один метод нахождения частного решения линейного неоднородного дифференциального уравнения второго порядка. Этот метод применим для уже рассмотренных уравнений с правой частью специального вида, а также для уравнений с правой частью более общего вида. Этот метод называют методом вариации произвольных постоянных, или методом Лагранжа.

Рассмотрим этот метод применительно к уравнению (17), хотя он позволяет находить решение и более общего уравнения с переменными коэффициентами. Согласно этому методу сначала находят два линейно- независимых решения и однородного дифференциального уравнения. Частное решение неоднородного дифференциального уравнения ищется в виде их линейной комбинации, в которой произвольные постоянные и заменяются на неизвестные функции и :

 

. (21)

 

Подстановка этого выражения в неоднородное дифференциальное уравнение (17) приводит к следующему уравнению:

. (22)

 

Перегруппируем слагаемые в (22):

 

(23)

 

Рассмотрим подробнее уравнение (23). Так как функции и являются решениями однородного дифференциального уравнения (12), выражения в третьей и четвертой скобках в (23) тождественно равны нулю. Наложим на пока неопределенные функции и следующее условие:

(24)

 

Тогда выражение в пятой скобке в (23) также окажется равным нулю. Продифференцируем обе части равенства (23):

Это соотношение показывает, что и выражение в первой скобке в (23) тождественно равно нулю.

Таким образом, при условии (24) уравнение (23) сводится к следующему: Иными словами, уравнение (23) равносильно системе уравнений:

 

(25)

Поскольку определитель этой системы является вронскианом двух линейно независимых решений и , и отличен от нуля, система всегда имеет единственное решение.

Решив систему уравнения (25), остается лишь найти и , то есть проинтегрировать полученные из (25) функции и ) и, подставить их в выражение для .

Пример11. Найти решение дифференциального уравнения: .

Решение. В этом уравнении правая часть не подпадает под вид, допускающий применение метода неопределенных коэффициентов.

Поэтому для нахождения частного решения неоднородного дифференциального уравнения воспользуемся методом вариации произвольных постоянных. Но сначала для нахождения фундаментальной системы решений рассмотрим однородное дифференциальное уравнение: .

Характеристическое уравнение имеет корни , и общее решение записывается в виде:

.

Частное решение неоднородного уравнения ищем в виде:

 

.

 

Система (25) приобретает вид:

Отсюда находим:

и

В итоге получаем: .

Общее решение рассматриваемого уравнения принимает вид:

.

 


Дата добавления: 2015-07-11; просмотров: 142 | Нарушение авторских прав


Читайте в этой же книге: Интегрирование по частям в неопределенном интеграле | Интегрирование рациональных дробей | Интегрирование тригонометрических функций | ТЕМА 6. ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ | Замена переменной в определенном интеграле | Объем тела вращения | ТЕМА 7. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ | Однородное уравнение первого порядка | Линейное уравнение первого порядка | Уравнение Бернулли |
<== предыдущая страница | следующая страница ==>
Линейное однородное дифференциальное уравнение второго порядка с постоянными коэффициентами| Рассмотрим выражение вида

mybiblioteka.su - 2015-2025 год. (0.027 сек.)