Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Линейное уравнение первого порядка

Читайте также:
  1. Dollar Index Cash (Индекс Долларовой Наличности), Покупка Первого Типа
  2. I. Дифференциальное уравнение вида
  3. II этап – знакомство с уравнением и овладение способом его решения.
  4. II. Дифференциальное уравнение вида
  5. II. Положительное согласование порядка и прогресса
  6. quot;ОБЕСПЕЧЕНИЕ ОБЩЕСТВЕННОГО ПОРЯДКА
  7. В изложении учеников первого круга

Решить линейное дифференциальное уравнение первого порядка можно с помощью введения двух новых искомых функций и , положив , и дополнительного условия на одну из них, выби­раемую произвольно. Рассмотрим применение этого метода на следующем примере.

Пример4. Решить дифференциальное уравнение .

Решение. Будем искать решение в виде: ;

Тогда ; Подставляя выражения для искомой функции и ее производной в рассматриваемое дифференциальное уравнение, получим:

, или

. (7)

Поскольку одну из функций и мы вправе выбрать произвольно, выберем ее так, чтобы выполнялось условие: Тогда уравнение (7) запишется в виде: . Это уравнение легко интегрируется: ; .

Произвольную постоянную здесь можно положить равной нулю, так как мы выбираем частное решение. Тогда .

После подстановки в исходное уравнение получим (при ):

; ; .

Таким образом, искомое общее решение.

 


Дата добавления: 2015-07-11; просмотров: 70 | Нарушение авторских прав


Читайте в этой же книге: ТЕМА 3. ИССЛЕДОВАНИЕ ФУНКЦИИ И ПОСТРОЕНИЕ ГРАФИКА | ТЕМА 4. ФУНКЦИИ ДВУХ ПЕРЕМЕННЫХ | ТЕМА 5. НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ | Интегрирование по частям в неопределенном интеграле | Интегрирование рациональных дробей | Интегрирование тригонометрических функций | ТЕМА 6. ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ | Замена переменной в определенном интеграле | Объем тела вращения | ТЕМА 7. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ |
<== предыдущая страница | следующая страница ==>
Однородное уравнение первого порядка| Уравнение Бернулли

mybiblioteka.su - 2015-2024 год. (0.005 сек.)