Читайте также:
|
|
Предположим, что тело вращается с угловой скоростью вокруг оси системы координат , которая вращается с угловой скоростью вокруг оси неподвижной системы координат причем оси и параллельны.
Скорость произвольной точки М тела (1). Скорости , и лежат в плоскости, перпендикулярной осям и , а это означает, ввиду произвольности точки М, что тело движется плоскопараллельно.
Найдем в плоскости мгновенный центр вращения. Для точки Р, лежащей на прямой , и коллинеарны и направлены в разные стороны тогда, когда точка Р лежит между и , в случае, если и направлены в одну сторону. Для того, чтобы их геометрическая сумма была равна нулю, нужно чтобы: · Р= · Р => / Р= / Р
Т.е. точка Р (мгновенный центр скоростей) делит отрезок , внутренним образом на части, обратно пропорциональные модулям угловых скоростей.
В каждом случае скорость точки Р равна нулю: (2).
Вернемся теперь к равенству (1), которое перепишем с учетом того, что:
;
Раскрывая скобки и используя равенство (2), получим:
(3)
С другой стороны, при плоскопараллельном движении: (4), сравнивая (3) и (4), получим:
Таким образом, мы доказали, что совокупность двух вращений твердого тела вокруг параллельных осей, не образующих пару вращений, эквивалентна одному вращению вокруг мгновенной оси с угловой скоростью, равной векторной сумме угловых скоростей составляющих вращений. Мгновенная ось делит расстояние между осями составляющих вращений внутренним образом) на части, обратно пропорциональные модулям угловых скоростей, в зависимости от того, в одну или разные стороны направлены векторы этих скоростей.
Дата добавления: 2015-07-14; просмотров: 74 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Дайте определения пары вращений. Докажите какому движению эквивалентна пара вращений. | | | Сложение вращений твёрдого тела относительно параллельных осей. Рассмотреть случай, когда угловые скорости направлены в одну сторону. |