Читайте также:
|
|
Существует два типа биологического окисления: свободное окисление и окисление, сопряженное с фосфорилированием АДФ.
13.2.1. Свободное окисление
Свободное окисление, не сопряженное с фосфорилированием АДФ, не сопровождаетсяся трансформацией энергии, выделяющейся при окислении в энергию макроэргических связей. При свободном окислении высвобождающаяся при сопряженном с окислением распаде химических связей энергия переходит в тепловую и рассеивается.
По типу свободного окисления идут все без исключения оксигеназные реакции, все окислительные реакции, ускоряемые пероксидазами или сопровождающиеся образованием Н2О2, многие реакции, катализируемые оксидазами.
Процессы свободного окисления сосредоточены в цитозоле, в мембране эндоплазматической сети клетки, в мембранах лизосом, пероксисом и аппарата Гольджи, на внешних мембранах митохондрий и хлоропластов. Они идут также в ядерном аппарате клетки.
Свободное окисление выполняет важные биологические функции, оно обеспечивает поддержание температуры тела на более высоком энергетическом уровне, чем температура окружающей среды. Биологическое окисление выполняет важную функцию модификации чужеродных соединений (ксенобиотиков).
Окисление, сопряженное с фосфорилированием АДФ
Такой тип биологического окисления может осуществляться несколькими способами:
– на уровне субстрата (субстратное фосфорилирование); сосредоточено в растворимой части клеток;
– на уровне электроннотранспортной цепи (окислительное фосфорилирование); сопряжение идет на внутренних мембранах митохондрий.
Механизм фотосинтетического и хемосинтетического фосфорилирования АДФ, сопровождающегося биосинтезом АТФ, близок к таковому при окислительном фосфорилировании в митохондриях.
Примерами сопряжения окисления с фосфорилированием на уровне субстра-
та могут служить реакции окисления 3-фосфоглицеринового альдегида
в 1,3-дифосфоглицериновую кислоту, 2-фосфоглицериновой кислоты – в
2-фосфоенолпировиноградную, a-кетоглутаровой кислоты – в янтарную.
Однако посредством реакций субстратного фосфорилирования образуется сравнительно небольшое количество АТФ. Главная масса АТФ у аэробных организмов синтезируется путем окислительного фосфорилирования в митохондриях.
Вопросы и задачи
1. Какой процесс называют биологическим окислением?
2. Какие ферменты катализируют окислительно-восстановительные реакции?
3. Каковы функции свободного окисления?
4. Назовите типы окисления, сопряженного с фосфорилированием?
5. Где осуществляется окислительное фосфорилирование?
Рекомендуемая литература
1. Биохимия. Краткий курс с упражнениями и задачами / Под ред. чл. - корр. РАН, проф. Е.С. Северина, проф. А.Я. Николаева. – М.: ГЭОТАР- МЕД, 2001. – 448 с.
2. Биохимия / В.Г.Щербаков, В.Г. Лобанов, Т.Н. Прудникова и др.; Под ред. В.Г. Щербакова. – СПб.: ГИОРД, 2003. – 440 с.
3. Жеребцов Н.А., Попова Т.Н., Артюхов В.Г. Биохимия. – Воронеж: Изд-во Воронеж. гос. ун-та, 2002. – 696 с.
4. Филлипович Ю.Б. Основы биохимии: Учебник для хим. и биол. спец. ун-тов и ин-тов. – М.: Изд-во «Агар», 1999. – 512 с.
5. Эллиот В. Биохимия и молекулярная биология / В. Эллиот, Д. Эллиот; Под ред. А.И. Арчакова, М.П. Кирпичникова, А.Е. Медведева, В.П. Скулачева. – Пер. с англ. О.В. Добрыниной, И.С. Севериной, Е.Д. Скоцеляс и др. – М.: МАИК «Наука Интерпериодика», 2002. – 446 с.
ГЛАВА 14. ВЗАИМОСВЯЗЬ ПРОЦЕССОВ
ОБМЕНА ВЕЩЕСТВ
Обмен различных классов органических соединений (белков, жиров, углеводов, липидов) независимо друг от друга осуществляться не может. Биохимические процессы представляют собой единый комплекс в живом организме. Процессы синтеза и распада взаимосвязаны, регулируются различными механизмами, придающими химическим процессам нужное направление. Все превращения взаимообусловлены, возможны взаимопревращения между отдельными классами органических веществ.
Основная задача клеточного метаболизма заключается в получении макроэргических соединений и метаболитов для различных биосинтезов. Существуют четыре главных этапа распада молекул углеводов, белков и жиров, которые интегрируют образование энергии из основных пищевых источников. На первом этапе полисахариды расщепляются до моносахаридов, жиры распадаются на глицерин и высшие жирные кислоты, а белки – на аминокислоты. Этап можно назвать подготовительным, так как сложные органические вещества (полимеры) распадаются на простые (мономеры). В основном процессы на этом этапе являются гидролитическими, освобождающаяся в небольшом количестве энергия почти целиком используется организмом в качестве тепла.
На втором этапе мономерные молекулы подвергаются дальнейшему распаду, в процессе которого образуются богатые энергией фосфатные соединения и ацетил- КоА. При гликолизе, например, гексозы расщепляются до пировиноградной кислоты и далее до ацетил-КоА. Этот процесс сопровождается образованием ограниченного числа богатых энергией фосфатных связей путем субстратного фосфорилирования. Высшие жирные кислоты на втором этапе распадаются до ацетил-КоА,а глицерин окисляется по глиголитическому пути до пировиноградной кислоты и далее до ацетил-КоА. Аминокислоты могут непосредственно превращаться в метаболиты лимонного цикла (глутамат, аспартат), другие – опосредованно через глутамат (пролин, гистидин, аргинин), третьи – в пируват и далее в ацетил-КоА (аланин, серин, глицин, цистеин). Ряд аминокислот, в частности, лейцин, изолейцин, расщепляются до ацетил-КоА, а из фенилаланина и тирозина, помимо ацетил-КоА, образуется оксалоацетат через фумаровую кислоту. Второй этап, таким образом, можно назвать этапом образования ацетил-КоА, являющимся единым (общим) промежуточным продуктом катаболизма основных пищевых веществ в клетках.
На третьем этапе ацетил-КоА и другие метаболиты подвергаются окислению («сгоранию») в цикле ди- и трикарбоновых кислот Кребса. Окисление сопровождается образованием восстановленных форм НАДФ + Н+ и ФАДН2.
На четвертом этапе осуществляется перенос электронов от восстановленных нуклеотидов на кислород (через дыхательную цепь). Он сопровождается образованием конечного продукта – молекулы воды. Этот транспорт электронов сопряжен с синтезом АТФ в процессе окислительного фосфорилирования.
В организме существуют прямые переходы различных классов веществ друг в друга и имеет место тесная энергетическая связь, когда энергетические потребности могут обеспечиваться окислением какого-либо одного класса органических веществ при недостаточном поступлении с пищей других (рис. 47).
Кетогенные аминокислоты, образующие в процессе обмена ацетоуксусную кислоту (ацетоацетил-КоА), могут непосредственно участвовать в синтезе жирных кислот и стеринов. Аналогично могут использоваться гликогенные аминокислоты через ацетил-КоА, но после предварительного превращения в пируват. Специализированные липиды, например, фосфоглицерины, имеют своим источником аминокислоты и их производные.
Рис. 47. Взаимосвязь белков, жиров и углеводов
Продукты гидролиза триацилглицеролов, в частности, высшие жирные кислоты, участвуют непосредственно в образовании сложных белков – липопротеинов плазмы крови.
Из большинства аминокислот непосредственно или через побочные метаболитические пути возможен синтез глюкозы.
Синтез незаменимых аминокислот из продуктов обмена углеводов и жиров в организме животных отсутствует. Организм, однако, может нормально развиваться исключительно на белковом питании (т.е. возможен синтез углеводов из белков). Из схемы (рис. 47) видно, что имеются различные пути взаимопревращений жиров и углеводов. Давно доказано превращение углеводов в жиры. Глицерин, входящий в состав триацилглицеролов и фосоглицеринов, может легко образовываться из промежуточных метаболитов гликолиза, в частности, из глицеральдегид-3-фосфата. Основным путем превращения углеводов в жиры является путь образования высших жирных кислот из ацетил-КоА, который образуется при окислительном декарбоксилировании пирувата. Последняя реакция практически необратима, поэтому образования углеводов из высших жирных кислот почти не происходит. Синтез углеводов из жиров в принципе может происходить только из глицерина (в обычных условиях реакция сдвинута в обратную сторону). Ацетил-КоА, образующийся в процессе обмена углеводов, жиров и ряда аминокислот, служит пусковым субстратом для синтеза жирных кислот, как и для цикла трикарбоновых кислот. Для окисления ацетил-КоА в этом цикле требуется оксалоацетат, который может синтезироваться из пировиноградной кислоты и СО2 благодаря реакции карбоксилирования или образовываться из аспарагиновой кислоты в процессе трансаминирования с a-кетоглутаратом. Две молекулы ацетил-КоА, конденсируясь, образуют ацетоуксусную кислоту (ацетоацетат), которая является источником других кетоновых тел в организме, в частности,
b-оксимасляной кислоты и ацетона. Реакции конденсации двух молекул ацетил-КоА составляют начальные этапы синтеза холестерина, в свою очередь являющегося предшественником гормонов стероидной природы, витамина D3, а также желчных кислот.
Галактоза (частично глюкоза) используется для биосинтеза цереброзидов и гликолипидов, выполняющих важные и специфические функции в деятельности ЦНС. В этом синтезе участвуют не свободные моносахариды, а гексозамины (галактозамин и глюкозамин), биосинтез которых требует доставки амидного азота глутамина.
Многообразие взаимопревращений органических веществ не ограничивается перечисленными примерами. Метаболитические превращения сложны и разнообразны, понимание их и раскрытие молекулярных механизмов химических процессов необходимо для определения физиологического состояния организма, понимания патологического процесса.
Вопросы и задачи
1. Возможно ли существование обособленно друг от друга обмена белков, углеводов, липидов? Ответ обоснуйте.
2. Охарактеризуйте 4 этапа распада органических соединений.
3. Какое соединение является общим (промежуточным) продуктом катаболизма основных веществ в клетке?
4. Охарактеризуйте основные пути взаимопревращений жиров и углеводов.
5. Как повлияет недостаток белков в пище на обменные процессы?
Рекомендуемая литература
2. Биохимия / В.Г.Щербаков, В.Г. Лобанов, Т.Н. Прудникова и др.; Под ред. В.Г. Щербакова. – СПб.: ГИОРД, 2003. – 440 с.
3. Березов Т.Т., Коровкин Б.Ф. Биологическая химия: Учебник.– М.: Медицина, 1998. – 704 с.
4. Жеребцов Н.А., Попова Т.Н., Артюхов В.Г. Биохимия.– Воронеж: Изд-во Воронеж. гос. ун-та, 2002. – 696 с.
5. Марри Р., Греннер Д., Мейес П., Родуэлл В. Биохимия человека: В 2 т. – Т. 1. Пер. с англ. – М.: Мир, 1993. – 384 с.
6. Филлипович Ю.Б. Основы биохимии: Учебник для хим. и биол. спец. ун-тов и ин-тов.– М.: Изд-во «Агар», 1999. – 512 с.
7. Эллиот В. Биохимия и молекулярная биология / В. Эллиот, Д. Эллиот; Под ред. А.И. Арчакова, М.П. Кирпичникова, А.Е. Медведева, В.П. Скулачева. – Пер. с англ. О.В. Добрыниной, И.С. Севериной, Е.Д. Скоцеляс и др. – М.: МАИК «Наука / Интерпериодика», 2002. – 446 с.
Дата добавления: 2015-10-23; просмотров: 271 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
ГЛАВА 13. БИОЛОГИЧЕСКОЕ ОКИСЛЕНИЕ | | | II Всемирные игры боевых искусств. Санкт-Петербург |