Читайте также: |
|
anticipated load | ожидаемая нагрузка |
BOP (blowout preventer) | противовыбросовое устройство, противовыбросовый превентор |
casing hanger | клиновой захват для спуска обсадных труб |
casing string | колонна обсадных труб |
conductor casing | направляющая труба (первая колонна обсадных труб, спускаемая в буровую скважину на сравнительно небольшую глубину для придания скважине правильного направления и перекрытия и пород, склонных к осыпанию) |
conduit | трубопровод |
guide shoe (casing shoe) | башмак обсадных труб (деталь из твердой стали, прикрепляемая к нижней трубе обсадной колонны и снабжена острым краем для срезания грунта) |
intermediate casing | промежуточная обсадная колонна (техническая) |
liner hanger | подвеска обсадной колонны хвостовика |
pay zone | зона с промышленной нефтегазоносностью |
production casing | эксплутационная колонна |
production interval | продуктивный интервал |
setting | установка; спуск и посадка обсадных труб |
setting depth | глубина установки |
slip | клин, плашка |
surface casing | колонна обсадных труб после кондуктора (кондуктор) |
surface string | комплект противовыбросовых превенторов |
threaded connection | резьбовое соединение |
3. Match the casing with its functions.
1. Conductor casing | Environmental protection, drilling fluid circulation, corrosion protection, drilling efficiency increase, wellhead load support, BOP equipment support, troublesome formation protection, sediment isolation; to seal off unconsolidated formations, to prevent from formation cave-in, to decrease pressure, to prevent from water pollution, to isolate production zone. |
2. Surface casing | |
3. Intermediate casing | |
4. Production casing | |
5. Liner |
Underline the components or functions that are correct.
1. Casing is a strong
a) lead pipe b) steel pipe c) the entire length of all the joints
2. Casing protects the shallow zones from
a) being contaminated b) caving in c) being flooded
3. Intermediate casing is needed for
a) pressure stabilization b) production interval isolation c) wellhead support
4. Liner consists of
a) joints and collars b) catches and slips c) collars and slips
5. Production casing
a) can be replaced b) can be repaired c) protect environment
6. Conductor casing has
a) the largest diameter b) the widest walls c) the smallest diameter
5. 9 Listen to the description of the well completion process. Then read the statements and choose the alternative – A, B, C or D – that best suits the information in the text.
1. To complete the oil or gas well
A. a production casing is used.
B. a surface casing is used.
C. a conductor casing is used.
D. an intermediate casing is used.
2. Primary recovery means that hydrocarbons are forced up to the surface due to
A. primary pressure
B. secondary pressure
C. air pressure
D. natural pressure
3. Even the field is developed professionally,
A. nine per cent of gas and forty five per cent of oil remain behind.
B. ninety per cent of gas and forty five per cent of oil remain behind.
C. fifteen per cent of gas and fifty four per cent of oil remain behind.
D. fifty per cent of gas and fourteen per cent of oil remain behind.
4. The Christmas tree is
A. a wellbottom area fitted with attractive drill bits.
B. a wellhead area fitted with surface casing.
C. a wellbottom area fitted with downhole pumps and valves.
D. a wellhead area fitted with many valves and pipes.
5. It is possible for a well to make a stand up to
A. five kilometers from the production platform.
B. five kilometers from the nearest pipe connection.
C. as many kilometers as necessary.
D. five kilometers from the wellhead.
6. Read the text “ Eight Steps Ensure Successful Cement Jobs”. Define eight factors the operators must consider for successful cementing jobs.
Drilling mud condition cement composition selection proper cementing system selection spacer and flush use the casing centralization pressure optimization the pipe move displacement rate maximization proper temperature slurry design |
1. Drilling mud condition
This factor is the most important in achieving good displacement during a cement job. The following measures are necessary to follow:
· determine the hole volume that can be circulated; evaluate the % of wellbore that is actually being circulated (for best results, use a caliper or material balance to determine downhole fluid mobility and check for annular fluid that is not moving);
· circulate the drilling mud to help break the gel structure of the fluid; condition the drilling mud until equilibrium is achieved (after casing is on bottom and before the displacement begins, circulating the mud decreases its viscosity and increases mobility);
· never allow the drilling mud to set static for extended periods, especially at elevated temperatures. (mud properties coming out of the well are the same as the mud pumped in); continue circulating until displacement program begins;
· modify the flow properties of the drilling fluid to optimize mobility and drilling cuttings removal;
· examine the mud gel strength profile during the job planning stage and just before the cement job (an optimum drilling fluid will have flat, non progressive gel strengths);
· measure the gel strength development during the job planning stage, at downhole temperature and pressure.
2.
They separate the dissimilar drilling mud from the cement. Also they enhance gelled-mud removal and allow better cement bond with the borehole. They are designed to serve various needs: (1) help well control; (2) provide increased mud-removal benefits. The following guidelines should be considered to achieve maximum mud displacement:
· pump the spacer fluid at an optimized rate or as fast as possible without breaking down the formation;
· provide spacer contact time and volume to remove the greatest possible amount of mud;
· make sure the viscosity, yield point and density of both the spacer and the cement slurry, are at least the same as the drilling fluid;
· design the spacer package to water-wet the surface of the pipe and formation thoroughly when using oil-based or synthetic – based drilling fluids.
Flushes are used for thinning and dispersing drilling – fluid particles. These fluids go into turbulence at low rates, helping to clean drilling fluid from the annulus.
3.
· rotating and reciprocating casing before and during cementing breaks up stationary, gelled pockets of drilling mud;
· loosens cuttings trapped the gelled mud
· allows high displacement efficiency at lower pump rates by keeping the drilling mud flowing.
4.
It helps to optimize drilling –fluid displacement. Good pipe standoff helps ensure uniform flow patterns around the casing. Equalizing the friction loss or force that flowing cement exerts around the annular clearance increases drilling-fluid removal. The best mud displacement at optimum rate is achieved when annular clearance is 1-1.5in. Pipe movement and displacement are severely restricted. Centralizers and other mechanical cementing aids commonly used in the industry, also serve as inline laminar flow mixers. They change flow patterns and promote better mud displacement and removal.
5.
· high-energy flow in the annulus is most effective to ensure good mud displacement;
· turbulent flow around the full casing circumference is desirable, but not absolutely essential;
· when turbulent flow is not a viable option for the formation or wellbore configuration, the highest pump rate is feasible;
· the best cementing results are obtained when the spacer and cement are pumped at maximum energy, the spacer is appropriately designed to remove mud and good competent cement is used.
6.
One can optimize cost and displacement efficiency by following guidelines:
· design the job on basis of actual wellbore circulating temperatures;
· estimate the bottomhole circulating temperature (BHCT) using the API;
· use the actual downhole temperatures measured;
· include surface mixing time when estimating job time.
7.
Operators are encouraged to design cement slurry for its specific application, with good properties to allow placement in a normal time period. The ideal cement slurry has no measurable, free water, provides adequate retarder to ensure proper placement and maintains stable density to ensure hydrostatic control. Several criteria affect slurry design:
· well depth
· BHCT
· Bottomhole static temperature (BHST)
· Drilling fluid hydrostatic pressure
· Drilling fluid type
· Slurry density
· Lost circulation
· Gas migration potential
· Pumping time
· Quality of mix water fluid-loss control
· Flow regime
· Quality of cement
· Dry or liquid additives
· Strength development
· Quality of the cement testing laboratory and equipment.
8.
These systems vary in their capability to provide good zone isolation in changing environments. The traditional approach to cement selection has been on the basis that higher compressive strengths result in higher cement sheath quality. One of the most versatile systems to apply is foam cement, which produces a more ductile and resilient cement and withstands the stress associated with casing expansion and contraction.
(Oil &Gas Journal, 1999)
Match the two parts of the sentences.
1. Low annular clearance | A. real bottomhole temperature analysis. |
2. Drilling mud flow properties are | B. the turbulent flow is required. |
3. Displacement efficiency can be achieved by | C. equal the cement slurry density and yield point as well. |
4. Drilling fluid density and yield point | D. define the slurry composition. |
5. Flow patterns can be changed by | E. influences mud displacement. |
6. For displacement rate increase | F. mechanical cementing technologies application. |
7. Pumping time can | G. in proportion to drilling cuttings removal rate. |
Look through the text once again and fill in the chart.
Steps | Objective | Description | Priority |
drilling mud condition | |||
cement composition selection | |||
proper cementing system selection | |||
spacer and flush use | |||
the casing centralization | |||
the pipe move | |||
displacement rate maximization | |||
proper temperature slurry design |
You have got some money for drilling procedure improvement in a certain oilfield. Unfortunately, the sum is not great and you are to choose four steps for successful cementing jobs. Moderate the whole implementation procedure and be ready to prove your choice.
WORDLIST
ENGLISH | RUSSIAN |
annular clearance | затрубный интервал |
annular space | затрубное пространство |
anticipated load | ожидаемая нагрузка |
bond (bonding) | соединение |
BOP (blowout preventer) | противовыбросовое устройство, противовыбросовый превентор |
bottomhole circulation temperature (BHCT) | динамическая температура на забое |
bottomhole static temperature (BHST) | статическая температура на забое |
casing circumference | окружность обсадных труб |
casing failure | разрушение обсадных труб |
casing hanger | клиновой захват для спуска обсадных труб |
casing head pressure | давление на устье скважины |
casing string | колонна обсадных труб |
cement sheath | фильтрационная корка на стенках скважины |
centralizer | центратор- для центрирования колонн обсадных труб |
compatibility | совместимость |
compressive strength | предел прочности при сжатии |
conductor casing | направляющая труба (первая колонна обсадных труб, спускаемая в буровую скважину на сравнительно небольшую глубину для придания скважине правильного направления и перекрытия и пород, склонных к осыпанию) |
conduit | трубопровод |
contact time | время контакта |
contaminate | загрязнять |
contraction | сжатие |
disperse | диспергировать |
displacement rate | объемный расход |
downhole (bottomhole) | забойное давление |
drill cuttings | шлам |
drilling fluid | буровой раствор (промывочная буровая жидкость) |
ductile | пластичный вязкий |
elevated temperature | надземная \ поверхностная температура |
equivalent circulating density (ЕCD) | эквивалент циркуляционной плотности |
expansion | расширение |
flow path | пути проникновения потока |
flow pattern | структура потока |
fluid mobility | подвижность жидкости |
fluid removal | смещение жидкости (отвод жидкости) |
flush(es) | струя жидкости |
foam cement | цементная пена |
friction loss | потери на трении |
gelled mud | густой буровой раствор |
guide shoe (casing shoe) | башмак обсадных труб (деталь из твердой стали, прикрепляемая к нижней трубе обсадной колонны и снабжена острым краем для срезания грунта) |
hole volume | объем скважины |
inclination | угол наклона буровой скважины к горизонту |
intermediate casing | промежуточная обсадная колонна (техническая) |
laminar flow | ламинарное течение |
liner hanger | подвеска обсадной колонны хвостовика |
pay zone | зона с промышленной нефтегазоносностью |
production casing | эксплутационная колонна |
production interval | продуктивный интервал |
reciprocating | расхаживание труб |
resilient | упругий \ эластичный |
retarder | замедлитель реакции \ демпфер |
set time | установленное время |
setting | установка; спуск и посадка обсадных труб |
setting depth | глубина установки |
slip | клин, плашка |
slurry | цементный раствор |
spacer(s) | промежуточное кольцо (жидкость с высокой вязкостью и плотностью для удаления бурового раствора) |
standoff | степень центрирования (обсадной колонны в стволе) |
surface casing | колонна обсадных труб после кондуктора (кондуктор) |
surface string | комплект противовыбросовых превенторов |
surge pressure | гидравлический удар (давление) |
swab (pressure) | поршень для откачки из скважины |
thickening time | время загустевания цементного раствора |
threaded connection | pезьбовое соединение |
water wet | смачиваемость |
weighted spacer | утяжелитель |
yield point | предел текучести |
APPENDIX
SELF- ASSIGNMENT TOPICS
1. Sophisticated bits-characteristics and classification.
2. Drilling fluid
3. Underbalance drilling
4. Centralizers
5. Horizontal –direction drilling
6. Vertical drilling
7. Side tracking
8. AutoTrack
9. Modernization of downhole turbine motors
10. Completion (types)
11. Completion components
12.Perforation
13. Stimulation
14.Sand control
15. Workovers
16.Environment protection
17. Support –and-alignment mechanisms
18. Piston pumps
19.Turbodrilling
REFERENCES
1. | Dictionary for the Petroleum Industry, Schlumberger, Austin, Texas, 1997 |
2. | JP Journal: 2004 -2007 |
3. | Oil and Gas Journal: 1999-2005 |
4. | Petroleum Engineering Handbook, Society of Petroleum Engineers, Richardson, TX, USA. 1992 |
5. | Primer of Oilwell Drilling. Basic Text of Oil and Gas Drilling: Ron Baker; Houston, Texas, 1994 |
6. | Wood’s Illustrated English – Russian \ Russian-English Petroleum Technology Dictionary, ALBION, WOODS Pub. |
7. | Белоусов,В., Нефтегазовая промышленность, Основные процессы и англо-русская терминология. М.:ООО Техинпут,2006 |
8. | Булатов, В.В. Пальчиков, В.В.: Англо-русский словарь по нефти и газу, М.: Руссо, 2001 |
INTERNET RESOURCES | |
www.en.wikipedia.org | |
www.bakerhughes.com |
Chapter 4
Pipeline Engineering
R.N. Abramova
Т.V. Vasilchenko
UNIT 1
PIPELINE CONSTRUCTION
Pipeline transport is a transportation of goods through a pipe. Most commonly, liquid and gases are sent, but pneumatic tubes that transport solid capsules using compressed air have also been used.
As for gases and liquids, any chemically stable substance can be sent through a pipeline. Therefore, sewage, slurry, water, or even beer pipelines exist; but the most important are those transporting oil and natural gas.
Lead-in
Fill in the spider gram with the words associated with Pipeline Engineering
Explain your associations.
Дата добавления: 2015-10-26; просмотров: 139 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Put the following circulating system components in a right order to make the system work. | | | Terms and Vocabulary |