Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Расчет и построение доверительного интервала для генеральной средней арифметической

Читайте также:
  1. II. IV. Построение фациальных и палеогеографических карт
  2. II. Отнесение опасных отходов к классу опасности для ОКРУЖАЮЩЕЙ ПРИРОДНОЙ СРЕДЫ расчетным методом
  3. II. Порядок расчета платы за коммунальные услуги
  4. II. СПОСОБЫ РАСЧЕТА ТОЧКИ ОТДЕЛЕНИЯ ПАРАШЮТИСТОВ ОТ ВОЗДУШНОГО СУДНА.
  5. III. Определение средней температуры подвода и отвода теплоты
  6. VI. Порядок расчета и внесения платы за коммунальные услуги
  7. А) расчеты с работниками банка по подотчетным суммам
Помощь ✍️ в написании учебных работ
1500+ квалифицированных специалистов готовы вам помочь

Так как распределение выборки d, составленной из разностей парных значений, согласуется с нормальным законом распределения, а генеральная дисперсия di неизвестна, точные значения границ доверительного интервала, в котором с доверительной вероятностью P будет находиться среднее арифметическое значение генеральной совокупности , найдем из следующего двойного неравенства:

Для рассматриваемой задачи оно будет иметь вид:

По таблице критерия Стьюдента (Приложение 4) мы нашли, что для уровня значимости a = 0,05, числа степеней свободы k = n – 1 = 10 – 1 = 9 и двухсторонней критической области ta = 2,26.

Стандартную ошибку среднего арифметического найдем по формуле:

уд.

Доверительный интервал для среднего арифметического прироста количества ударов за 10 с в генеральной совокупности равен:

1,35 уд. 8,65 уд.

Следовательно, с доверительной вероятностью P = 0,95 можно утверждать, что в результате тренировки улучшение показателя скоростных качеств будет находиться в пределах от 1,35 до 8,65 ударов за 10 с.

Для построения доверительного интервала необходимо выбрать масштаб. Выберем масштаб 1 уд ≡ 1 см.

 

Доверительный интервал для


Вариант 2: критерий непараметрический

Примечание: В качестве примера возьмем приведенные в таблице 5.4 результаты измерения показателя скоростных качеств у спортсменов перед началом тренировок (они обозначены индексом В, были получены в результате измерений на I этапе деловой игры) и после двух месяцев тренировок (они обозначены индексом Г).

 

От выборок В и Г перейдем к выборке, составленной из разностей парных значений di = NiГNiВ и определим квадраты этих разностей. Данные занесем в расчетную таблицу 5.4.

 

Таблица 5.4 – Расчет квадратов парных разностей значений di2

№ п/п NiВ, уд NiГ, уд di = NiГ NiВ, уд di2, уд2
-7
-5
-1
      S = 27 S = 347

 

Пользуясь таблицей 5.4, найдем среднее арифметическое парных разностей:

уд.

Далее рассчитаем сумму квадратов отклонений di от по формуле:

уд.2

Определим дисперсию для выборки di:

уд.2

Далее необходимо выборку, составленную из разностей парных значений di, проверить на нормальность распределения.

Выдвигаем гипотезы:

– нулевую – H0: о том, что генеральная совокупность парных разностей di имеет нормальное распределение;

– конкурирующую – H1: о том, что распределение генеральной совокупности парных разностей di отлично от нормального.

Проверку проводим на уровне значимости a = 0,05.

Для этого составим расчетную таблицу 5.3.

Порядок заполнения таблицы 5.5 аналогичен порядку заполнения таблицы 5,3 и был описан в первом варианте выполнения V этапа.

 

 

Таблица 5.5 – Данные расчета критерия Шапиро и Уилка Wнабл для выборки, составленной из разностей парных значений di

№ п/п di, уд k dn - k + 1-dk=Dk ank Dk×ank
-7 8 – (–7) = 15 0,5739 8,6085
-5 7 – (–5) = 12 0,3291 3,9492
-1 7 – (–1) = 8 0,2141 1,7128
7 – 0 = 7 0,1224 0,8568
6 – 5 = 1 0,0399 0,0399
       
       
       
       
       

 

По таблице 5.5 находим:

;

.

Наблюдаемое значение критерия Wнабл находим по формуле:

.

Проверим правильность выполнения расчетов критерия Шапиро и Уилка (Wнабл) его расчетом на ПЭВМ по программе «Статистика».

Расчет критерия Шапиро и Уилка (Wнабл) на ПЭВМ позволил установить, что:

.

Далее по таблице критических значений критерия Шапиро и Уилка (Приложение 3) ищем Wкрит для n = 10. Находим, что Wкрит = 0,842. Сравним величины Wкрит и Wнабл.

Делаем вывод: так как Wнабл (0,839) < Wкрит (0,842), должна быть принята конкурирующая гипотеза о распределении генеральной совокупности di, отличном от нормального. Поскольку выборки попарно зависимые, а распределение парных разностей отличается от нормального, для оценки эффективности применявшейся методики развития скоростных качеств следует использовать непараметрический U-критерий Уилкоксона.

 

Доверь свою работу ✍️ кандидату наук!
1500+ квалифицированных специалистов готовы вам помочь

Дата добавления: 2015-07-08; просмотров: 128 | Нарушение авторских прав


 

 

Читайте в этой же книге: Эквивалентность тестов | Пути повышения надежности теста | Корреляционное поле | Оценка информативности теста | Эмпирическая информативность (существует измеряемый критерий) | Корреляционное поле | Нормальный закон распределения результатов измерений | Доверительный интервал. Доверительная вероятность | Построение доверительного интервала для оценки среднего значения генеральной совокупности | Порядок работы на V этапе |
<== предыдущая страница | следующая страница ==>
Проверка эффективности применявшейся методики тренировки| Проверка эффективности применявшейся методики тренировки

mybiblioteka.su - 2015-2022 год. (0.039 сек.)