Читайте также: |
|
Пусть за время Δt точка переместилась из М в М (рис.7), вектор Δ - вектор перемещения. Средней скоростью точки за время Δt называется вектор ср = Δ /Δt. Скоростью точки в данный момент времени называется предел, к которому стремится отношение вектора перемещения к промежутку времени, за которое оно произошло, при стремлении последнего к нулю:
= lim Δ /Δ t
Δt
Из рис. 7 видно, что: (t) + Δ = (t+Δt) тогда: Δ = (t+Δt) - (t), и
= lim Δ /Δ t = lim( (t+Δt) - (t)) / Δ t = d / dt.
Δt Δt
то есть, скорость точки в данный момент времени равна первой производной от радиуса вектора по времени. Из рисунка видно, что вектор скорости в данный момент времени занимает положение касательной. Скорость измеряется в м/с.
6. Ускорение при векторном способе задания движения.
Средним ускорением называется отношение вектора изменения скорости к промежутку времени, за которое оно произошло: ср=Δ /Δt.
Ускорением точки в данный момент называется предел этого отношения при стремлении промежутка времени к нулю.
= lim Δ /Δt = lim( (t+ Δt) - (t))/ Δt.
Δt Δt
Ускорение равно первой производной от скорости или второй производной от радиуса вектора по времени:
= d /dt = d /dt .
Ускорение ср, а значит и ускорение в данный момент времени - направлено в сторону вогнутости траектории (рис.8). Ускорение измеряется в м/с2.
7. Скорость при координатном способе задания движения.
Известно, что: =d /dt,но =x· +y· +z· , тогда (т.к. , , - const):
= dx/dt· +dy/dt· +dz/dt· , (1)
С другой стороны: = v · +v · +v · . (2)
сравнивая (1) и (2) получим: vх = dx/dt; vу = dy/dt; v = dz/dt, т.е. проекция скорости на ось равна первой производной от соответствующей координаты по времени. Зная проекции можно найти модуль скорости:
= , а так же направляющие косинусы:
соs(; ) = vx / | |; соs(; ) = vy / | |; соs(; ) = vz / | |.
8. Ускорение при координатном способе задания движения.
Известно, что: = d /dt, но = vx· + vy· + vz· , тогда:
= dv x /d t · +dvy /d t · +dvz /dz · , (1)
с другой стороны: = ах · + ау · + аz· . (2)
сравнивая (1) и (2) получим:
а x =dv x /dt =d x / dt ; аy=dvy/ dt =d y / dt ; а =dvz /dt =d z / dt . то есть: проекция ускорения на ось равна первой производной от проекции скорости на ту же ось, или второй производной от соответствующей координаты по времени.
Модуль ускорения: | | = , направляющие косинусы:
соs (; ) = аx / | |; соs(; ) = аy / | |; соs (; ) = аz / | |.
Дата добавления: 2015-07-07; просмотров: 372 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Естественные оси координат. | | | Поступательное движение твердого тела. |