Читайте также:
|
|
К сложным случаям письменного умножения относят все случаи вычислений, в которых происходит либо нарушение способа записи (для краткости вычислений), либо нарушение порядка выполнения алгоритма.
В общем случае при записи умножения в столбик следует записывать разряд под соответствующим разрядом, а вычисления начинать с умножения первого множителя на единицы младшего разряда (разряда единиц), далее умножают первый множитель на число десятков второго множителя, далее — на число сотен и т. д. Таким образом находят неполные произведения, которые затем складывают, получая результат умножения.
В сложных случаях может происходить нарушение формы записи.
В первых трех случаях нарушение формы записи можно объяснить наличием нулей (незначащих цифр) в множителях, что позволяет на первом вычислительном этапе мысленно опускать их, помножая затем результат на нужное количество десятков.
В четвертом случае происходит нарушение порядка выполнения действий — после умножения первого множителя на число единиц второго множителя, сразу переходим к умножению первого множителя на число сотен, поскольку число десятков второго множителя обозначено цифрой 0. Подразумевается, что умножение первого множителя на 0 десятков дает нулевой результат во втором неполном произведении. Поэтому для экономичности записи его опускают, подразумевая его «по умолчанию». В связи с этим при умножении первого множителя на число сотен второе (фактически — третье) неполное произведение записывают со сдвигом влево на два разряда, поскольку первая справа значащая цифра этого неполного произведения будет цифрой сотен, поэтому ее следует записать в разряд сотен.
Для того чтобы ребенок понял смысл всех этих многочисленных действий «по умолчанию», при знакомстве с этими трудными случаями следует сначала производить полные записи и выполнять все, предписанные алгоритмом действия, а не просто указывать ребенку, что куда следует «сдвигать». Затем, сравнивая два вида записи (полный и сокращенный) нужно помочь ребенку понять, какие элементы и этапы полного алгоритма и полной записи можно опустить, и что при этом произойдет с формой записи. В этом случае ребенок будет выполнять трансформации формы записи и порядка выполнения действий при письменном умножении осознанно, что способствует пониманию вычислительного приема и формированию осознанной вычислительной деятельности школьника.
Дата добавления: 2015-07-08; просмотров: 365 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Письменное умножение на двузначное (и многозначное) число | | | Деление в столбик |