Читайте также: |
|
Прием письменного деления включает такие операции: замену делимого суммой удобных слагаемых (это чаще называют выделением неполных делимых), деление на делитель каждого слагаемого (неполного делимого) и сложение полученных частных. Для получения цифр частного используют прием подбора. Не всегда получается сразу подобрать оптимальную цифру частного. Каждую подобранную цифру частного проверяют, умножая ее на делитель находят разницу между неполным делимым и полученным произведением. Если этот остаток меньше делимого, то цифра частного выбрана верно, ее можно записывать в частное и продолжать процесс со вторым неполным делимым и т. п.
Письменное деление может быть с остатком и без остатка.
Письменное деление всегда начинают с высших разрядов, в отличие от письменного умножения.
В традиционном учебнике математики использован поэтапный подход к формированию письменного алгоритма деления:
1-й этап: рассматриваются случаи вида 794: 2; 984: 4 — первое неполное делимое однозначное;
2-й этап: рассматриваются случаи вида 376: 4; 198: 6 — первое неполное делимое двузначное;
3-й этап: рассматриваются случаи с нулями в частном (на конце или в середине);
4-й этап: рассматривается деление чисел, оканчивающихся нулями.
Учебник математики для 3 класса содержит подробное описание процесса деления «в столбик», пошагово оговаривающее каждое умственное действие по выполнению подбора и проверки цифр частного, нахождения количества разделенных разрядных единиц, нахождения остатка.
Например:
Рассмотрим как выполнено деление с объяснением:
1. Делю сотни: 7 сот. делю на 2, можно взять по 3 сот. В частном будет 3 сот.
Проверяю, сколько сотен разделилось: 3 сот. -2 = 6 сот. Нахожу остаток от деления сотен: 7 сот. - 6 сот. = 1 сот.
2. Делю десятки: 1 сот. = 10 дес. и еще 4 дес. — это 14 дес. 14 дес. делю на 2 — можно взять по 7. Записываю в частном 7 в разряде десятков. 7 дес. • 2 = 14 дес. Нахожу остаток: 14 дес. - 14 дес. = 0. Десятки разделились все.
3. Делю единицы — единиц 8. 8 делю на 2, можно взять по 4. Проверяю: 4-2 = 8. Пишу в частном 4 в разряде единиц. Единицы разделились все: 8-8 = 0. Остатка нет. Деление закончено.
Ответ: 374.
При делении вида 45) 6: 8 ход рассуждений аналогичен, только первое неполное делимое — 45 десятков, поскольку 4 сотни нельзя разделить на 8 так, чтобы получить в частном сотни. Таким образом, первая значащая цифра частного в этом случае будет цифрой десятков.
При делении многозначных чисел для самопроверки полезно заранее определить, сколько цифр должно получиться в записи частного. Выделение первого неполного делимого и определение его десятичного состава как раз и является приемом, позволяющим определить количество цифр частного.
Например:
В случае деления 748: 2 первое неполное делимое — 7 сотен, поскольку 7 сотен можно разделить на 2 так, чтобы в частном получились сотни. Следовательно, первой значащей цифрой частного будет цифра сотен, тогда в частном будет три цифры (сотни, десятки и единицы).
Во втором случае деления 456: 8 первое неполное делимое — 45 десятков, следовательно первой значащей цифрой частного будет цифра десятков, тогда в частном будет две цифры (десятки и единицы).
Обучение ребенка этому приему самопроверки является важным способом формирования осознаваемой вычислительной деятельности. Особенно важен этот прием при выполнении деления, приводящего к случаям получения нулей в частном.
Первое неполное делимое 56 сотен (поскольку 5 тысяч нельзя разделить на 8 так, чтобы получить в частном тысячи), значит, первой цифрой частного будет цифра сотен. Следовательно, в частном будет три цифры (сотни, десятки и единицы). Данное рассуждение полезно отметить постановкой соответствующего количества точек в частном. Это предупредит распространенную в таких случаях ошибку — потерю цифры частного.
Далее деление выполняется по общему алгоритму:
При объяснении получения нуля в частном следует в речевом сопровождении компенсировать условность сокращенной записи деления в столбик: 4 десятка нельзя разделить на 8 так, чтобы в частном получились целые десятки, поэтому в разряде десятков частного ставим 0. 4 десятка — это 40 единиц, да еще 8 единиц — делим 48 на 8...
При делении чисел, оканчивающихся нулями, следует постоянно применять прием «прикидки» цифр частного, это поможет ребенку не терять нули в конце деления.
Дата добавления: 2015-07-08; просмотров: 790 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Деление в столбик | | | Деление на двузначное и трехзначное число |