Читайте также:
|
|
Плоскостью называется поверхность, которая образуется при движении прямой линии параллельно самой себе по неподвижной направляющей прямой.
Плоскость можно определить симплексом, т.е. тремя не принадлежащими одной прямой точками, и алгоритмом задания текущей ее точки М (рис.1.10). Точка М (М1, М2) в плоскости треугольника АВС строится с помощью прямой А1. Точка А принадлежит плоскости АВС, как вершина этого треугольника, точка 1 принадлежит прямой ВС. Тогда вся прямая А1 со всеми ее точками (включая М) принадлежит плоскости.
Плоскость может быть задана:
- проекциями трех точек, не лежащих на одной прямой, (рис.1.11), или проекциями треугольника;
- проекциями прямой и точки, взятой вне прямой, (рис. 1.12);
- проекциями двух пересекающихся прямых, (рис. 1.13); Рисунок 1.10. Задание плоскости
- проекциями двух параллельных прямых, (рис. 1.14);
- проекциями любой плоской геометрической фигуры, (рис.1.15).
Рисунок 1.11 | Рисунок 1.12 | Рисунок 1.13 | Рисунок 1.14 | Рисунок 1.15 |
Рисунки 1.11-1.15. Способы задания плоскости на комплексном чертеже
Все изображенные на рис. 1.11-1.15 плоскости являются плоскостями общего положения. Плоскостью общего положения называется плоскость, не перпендикулярная ни одной из плоскостей проекций.
Т.к. следы плоскости – прямые линии, то для их построения достаточно найти две точки принадлежащие им. Если прямые лежат в плоскости, то их следы лежат на следах плоскости. для построения следов плоскости достаточно построить следы двух прямых лежащих в этой плоскости (рис. 1.17).
Фронтальным следом плоскости ά называется линия ее пересечения с фронтальной плоскостью проекций П2. Обозначается фронтальный след буквой fά. Фронтальная проекция этого следа f2ά совпадает с самим следом, а горизонтальная f1ά лежит на оси х12.
Горизонтальный след плоскости – линия пересечения с горизонтальной плоскостью проекций П1. Аналогично горизонтальный след плоскости hά совпадает со своей горизонтальной проекцией h1ά, а его фронтальная проекция лежит на оси X12.
Они имеют общую точку на оси X – точку схода следов.
Дата добавления: 2015-10-02; просмотров: 124 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Прямоугольные проекции прямой на эпюре Гаспара Монжа | | | Прямая принадлежит плоскости, если она проходит через две точки, принадлежащие данной плоскости. |