Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Метод координатного спуска

Условия применимости метода простых итераций. | Описание метода простых итераций. | Случай, когда матрица А близка к единичной. | Численные методы решения экстремальных задач | Численные методы поиска экстремумов функций одной переменной | Метод равномерного поиска. | Метод поразрядного приближения | Метод деления отрезка пополам (или метод дихотомии). | Метод квадратичной интерполяции | Метод золотого сечения |


Читайте также:
  1. I. Коммуникативные игры, в основе которых лежит методический прием ранжирования.
  2. I. Новые нормативные и методические документы в области воздухоохранной деятельности
  3. I. Организационно-методический раздел
  4. II. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ИЗУЧЕНИЮ ДИСЦИПЛИНЫ
  5. IV. МЕТОДИЧЕСКАЯ ЧАСТЬ ПРОЕКТА
  6. IV. МЕТОДИЧЕСКАЯ ЧАСТЬ ПРОЕКТА
  7. Quot;НЕДЕЛАНИЕ". ОСТАНОВКА ВНУТРЕННЕГО ДИАЛОГА. МЕТОДЫ

Идея всех методов спуска состоит в том, чтобы исходя из начального приближения - точки

Î Dn (Dn - область определения функции) перейти в следующую точку

Î D так, чтобы значение уменьшилось, т.е. .

Рассматриваем функцию при фиксированных значениях как функцию одной переменной . Находим одним из описанных выше методов . Значение доставляющий минимум обозначаем . £

После нахождения точки минимума по координате переходим к нахождению минимума по координате от новой точки и так далее по всем оставшимся координатам.

Для гладких функций погрешность вычислений в данном методе складывается из погрешностей при вычислении минимума по каждой переменной, хотя для некоторых функций специального вида погрешность может быть и очень велика.

Центральным звеном рассматриваемого алгоритма является поиск минимума функции одной переменной. Методы применимые к этому случаю рассмотрены выше.


Дата добавления: 2015-08-27; просмотров: 65 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Численные методы поиска экстремумов функций многих переменных| Градиентный метод

mybiblioteka.su - 2015-2025 год. (0.004 сек.)