Читайте также:
|
|
Хочется еще раз подчеркнуть, что метод Гаусса приспособлен и для решения вырожденных систем. Отличия при этом невелики. Приведение системы происходит описанным выше методом, но не обязательно к верхнетреугольному виду, а к более общему -ступенчатому. Если на каком-то шаге прямого хода встречается ситуация, когда в столбце не только разрешающий элемент, но и все элементы ниже него равны нулю (переменная как-бы исключилась сама по себе), то мы просто начинаем из этого же уравнения исключать сразу следующую переменную, т.е. переходим к следующему столбцу, не переходя к следующей строке. После окончания прямого хода возможны два варианта:
· либо мы видим, что полученная система несовместна, когда в одной из последних ненулевых строк все коэффициенты левой части равны 0, а свободный член – нет
· либо система имеет бесконечное множество решений, которые можно получать следующим общим способом – задать произвольные значения всем «свободным» переменным, которые были пропущены в процессе исключения, т.е. «исключились сами по себе» и вычислить значения всех остальных переменных по формулам обратного хода.
Применения метода Гаусса.
Метод Гаусса является одним из эффективных методов решения различных задач линейной алгебры.
Дата добавления: 2015-08-27; просмотров: 46 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Регуляризация решения | | | Определение совместности системы. |