Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Постановка задачи и ее качественное исследование.

Сплайн-интерполяции. | ЧИСЛЕННОЕ ИНТЕГРИРОВАНИЕ ФУНКЦИЙ | Общая схема | МЕТОД ТРАПЕЦИЙ. | МЕТОД СИМПСОНА. | Метод двойного счета. | Метод Пикара. | Методы Рунге-Кутта | Постановка задачи и ее качественный анализ. | Нахождение наилучшей линейной приближающей функции. |


Читайте также:
  1. I. ЦЕЛИ И ЗАДАЧИ ПРЕДДИПЛОМНОЙ ПРАКТИКИ
  2. II. Цели и задачи Конкурса
  3. II. Цели и задачи преддипломной практики.
  4. III. Задачи Коммунистического Интернационала в борьбе за мир, против империалистической войны
  5. III. ЦЕЛИ И ЗАДАЧИ
  6. III. ЦЕЛИ, ЗАДАЧИ И ПРИНЦИПЫ ДЕЯТЕЛЬНОСТИ ПЕРВИЧНОЙ ОРГАНИЗАЦИИ ПРОФСОЮЗА
  7. Векторы. Действия с векторами.Координаты вектора. Простейшие задачи с векторами

Рассмотрим систему m линейных уравнений с n переменными:

(7.1)

Систему (7.1) можно записать короче в виде одного матричного уравнения AX=B,

где Х -столбец длины n, B -столбец длины m, А -матрица размерами mхn.

TEOРЕМА 1. Если ранг матрицы А совпадает с рангом расширенной матрицы (А|B), то в этом случае существует решение системы (7.1) и наоборот.

ТЕОРЕМА 2. В случае, когда количество уравнений совпадает с числом неизвестных и определитель A отличен от 0, существует единственное решение системы(7.1).

m=n и det(А)<>0 => решение (7.1) существует и единственно.

Если n>m, то решений (7.1) обычно бесконечное множество (линейное пространство размерности n-rang(A)). Если m>n, то обычно решений нет.

Упражнение 7.1. Приведите пример несовместной системы, у которой m<n.

Упражнение 7.2. Приведите пример совместной системы, у которой m>n.

Далее мы ограничимся рассмотрением частного случая: m=n и det(А)<>0, т.е. случай, когда решение существует и единственно, хотя метод Гаусса, например, носит универсальный характер.

Методы решения систем линейных уравнений можно разбить на две группы: точные методы и приближенные. К точным (прямым) относятся методы, позволяющие за конечное число шагов получить точное решение системы, (т.е. те методы, погрешность которых равна 0). К итерационным относятся методы, при которых строится рекуррентная последовательность векторов, сходящихся к решению. Обычно они применяются, когда применение точных методов затруднено или невозможно, например когда порядок системы – тысячи переменных.

К прямым методам относятся, кроме метода Гаусса, метод квадратного корня для симметричных матриц (или компакт-метод для произвольных), метод Крамера. Последний метод обычно изучается в теории систем линейных уравнений в виду возможности кратко записать решение системы. Пусть D-определитель квадратной матрицы А системы линейных уравнений: D=det(A)¹0. Пусть D(i)-определитель матрицы, у которой на i-ом месте находится столбец В, а остальные столбцы совпадают с соответствующими столбцами матрицы А. Тогда координаты вектора решения находятся по формулам: Х(i)=D(i)/D.

Упражнение 7.3. Определите по формулам Крамера решение системы и проверьте его:


Дата добавления: 2015-08-27; просмотров: 45 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Сведение поиска функций другого вида к поиску линейной функции.| Ручные вычисления по методу Гаусса.

mybiblioteka.su - 2015-2024 год. (0.005 сек.)