Читайте также:
|
|
Он состоит в следующем: по ряду (А) и его частичным суммам строится выражение:
Если последний ряд сходится, хотя бы для достаточно больших значений х, и его сумма при имеет предел А, то это число и является “обобщенной суммой” в смысле Борелядля данного ряда (А).
Докажем регулярность метода Бореля. Допустим сходимость ряда (А) и обозначим его сумму через А, а остатки через
. Имеем (для достаточно больших х)
Зададимся произвольно малым числом ; найдется такой номер N, что для
будет:
.
Представим последнее выражение в виде суммы,
.
Второе слагаемое по абсолютной величине , каково бы ни было х, а первое представляющее собой произведение
на многочлен, целый относительно х, становится абсолютно
при достаточно больших х. Этим все доказано.
Дата добавления: 2015-08-17; просмотров: 84 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Обобщенные методы Чезаро | | | Метод Эйлера |