Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Суть метода

Введение | Определения и термины | Теорема Таубера | Суть метода | Взаимоотношение между методами Пуассона-Абеля и Чезаро | Теорема Харди-Ландау | Применение обобщенного суммирования к умножению рядов | Методы Г.Ф. Вороного | Обобщенные методы Чезаро | Метод Бореля |


Читайте также:
  1. Алгоритм метода множителей Лагранжа
  2. Базовый и производный классы. Конструкторы производного класса. Перегрузка методов при наследовании. Алгоритм выбора перегруженного метода.
  3. Вероятностная диагностика (скрининг) с использованием стратегия Байеса. Оценка информативности клинических признаков. Ограничения метода.
  4. Взаимоотношение между методами Пуассона-Абеля и Чезаро
  5. Взаимоотношение между методами Пуассона-Абеля и Чезаро
  6. Визуализация метода
  7. Визуализация метода

 

Этот метод принадлежит Пуассону, который сделал первую попытку применить его к тригонометрическим рядам. Он состоит в следующем.

По данному числовому ряду (А) строится степенной ряд

( 1)

Если этот ряд для сходится и его сумма при имеет предел А:

,

то число А и называют “обобщённой (в смысле Пуассона) суммой” данного ряда. Примеры.1) Ряд, рассмотренный Эйлером:

Здесь уже в силу самого определения приводит к степенному ряду, сумма которого при стремится к пределу . Значит, число , действительно, является “обобщенной суммой” указанного в точном установленном здесь смысле.

2) Возьмем более общий пример: тригонометрический ряд

 

(2)

является расходящимся при всех значениях

Действительно, если имеет вид , где и - натуральные числа, то для значений , кратных , будет , так что нарушено необходимое условие сходимости ряда. Если же отношение иррационально, то, разлагая его в бесконечную непрерывную дробь и составляя подходящие дроби , будем иметь, как известно,

 

откуда

 

Таким образом, для бесконечного множества значений

 

, так что .

 

Непосредственно ясно, что рассматриваемый метод “обобщенного суммирования” является линейным. Что же касается регулярности этого метода, то она устанавливается следующей теоремой принадлежащей Абелю.

 


Дата добавления: 2015-08-17; просмотров: 75 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Истоки проблемы| Теорема Абеля

mybiblioteka.su - 2015-2025 год. (0.005 сек.)