Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Линейный коэффициент корреляции

Линейные и нелинейные модели регрессии | А) случай независимых выборок | Случай связанных (парных) выборок | Множественная регрессия | Изучение сезонных колебаний | S-кривая | Решение. | Модель экономического роста Харрода | Логит и пробит модели | Основные стадии экспертного опроса |


Читайте также:
  1. Алгоритм нахождения общего решения линейного однородного дифференциального уравнения второго порядка с постоянными коэффициентами .
  2. Величины, характеризующие деформацию тела. Коэффициенты деформации.
  3. Влияние обратной связи на коэффициент усиления и входное сопротивление усилителя.
  4. Влияние различных факторов на коэффициент (показатель) трения
  5. Вопрос 23. Способы регулирования коэффициента усиления в радиоприемниках.
  6. Выбор коэффициентов , учитывающих концентрацию напряжений, размер вала, качество обработки поверхности, упрочняющую технологию.
  7. Выбор масштаба времени: Коэффициент пятерЬи

Для устранения недостатка ковариации был введён линейный коэффициент корреляции (или коэффициент корреляции Пирсона), который разработали Карл Пирсон, Фрэнсис Эджуорт и Рафаэль Уэлдон (англ.)русск. в 90-х годах XIX века. Коэффициент корреляции рассчитывается по формуле[10][8]:

5. Криетрий Фишера

F-тестом или критерием Фишера (F-критерием, φ*-критерием) — называют любой статистический критерий, тестовая статистика которого при выполнении нулевой гипотезы имеет распределение Фишера (F-распределение).

Статистика теста так или иначе сводится к отношению выборочных дисперсий (сумм квадратов, деленных на "степени свободы"). Чтобы статистика имела распределение Фишера необходимо, чтобы числитель и знаменатель были независимыми случайными величинами и соответствующие суммы квадратов имели распределение Хи-квадрат. Для этого требуется, чтобы данные имели нормальное распределение. Кроме того, предполагается, что дисперсия случайных величин, квадраты которых суммируются, одинакова.

Тест проводится путем сравнения значения статистики с критическим значением соответствующего распределения Фишера при заданном уровне значимости. Известно, что если , то . Кроме того, квантили распределения Фишера обладают свойством . Поэтому обычно на практике в числителе участвует потенциально большая величина, в знаменателе - меньшая и сравнение осуществляется с "правой" квантилью распределения. Тем не менее тест может быть и двусторонним и односторонним. В первом случае при уровне значимости используется квантиль , а при одностороннем тесте [1].

Более удобный способ проверки гипотез - с помощью p-значения - вероятностью того, что случайная величина с данным распределением Фишера превысит данное значение статистики. Если (для двустороннего теста - )) меньше уровня значимости , то нулевая гипотеза отвергается, в противном случае принимается.

Критерий Фишера позволяет сравнивать величины выбороч­ных дисперсий двух независимых выборок. Для вычисления Fэмп нуж­но найти отношение дисперсий двух выборок, причем так, что­бы большая по величине дисперсия находилась бы в числителе, а меньшая – в знаменателе. Формула вычисления критерия Фи­шера такова:

(8)

где - дисперсии первой и второй выборки соответственно.

Так как, согласно условию критерия, величина числителя должна быть больше или равна величине знаменателя, то значе­ние Fэмпвсегда будет больше или равно единице.

Чис­ло степеней свободы определяется также просто:

k1=nl - 1 для первой выборки (т.е. для той выборки, величина дисперсии которой больше) и k2=n2 - 1 для второй выборки.

tэмп>tкрит, то нулевая гипотеза принимается, в противном случае принимается альтернативная


Дата добавления: 2015-08-17; просмотров: 75 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Определение параметров в моделях парной регрессии| Проверка значимости линейной регрессии

mybiblioteka.su - 2015-2025 год. (0.005 сек.)