Читайте также:
|
|
Такая последовательность уже неоднократно встречалась в статье, например, первая скрипка теоретического параграфа .
Действительно, как аналитически найти предел знакочередующейся последовательности, если знак то «плюс», то «минус»?
И я, наконец-то, заряжаю в свой револьвер тот самый волшебный патрон:
Пример 13
Найти предел последовательности
Решение: на первом шаге следует найти предел последовательности , которая составлена из модулей членов. Знак модуля уничтожает возможный минус, поэтому чтобы получить , нужно попросту убрать множитель, обеспечивающий знакочередование. Чаще всего это «мигалка»:
Теперь как ни в чём не бывало, вымучиваем наш обычный предел:
Получено конечное число. Очевидно, что знакочередование не поменяет сути – члены последовательности будут «прыгать» вокруг своего предела, бесконечно близко приближаясь к нему. Собственно, это проиллюстрировано на единственном рисунке данного урока.
Ситуация принципиально такая же, как, например, у более простых последовательностей .
Дата добавления: 2015-07-25; просмотров: 79 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Теорема: произведение ограниченной последовательности на бесконечно малую последовательность – есть бесконечно малая последовательность. | | | Ответ: так как последовательность является знакочередующейся и , то . |