Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Среди правильно построенных формул в зависимости от их истинностного значе­ния различают тождественно истинные, тождественно ложные и выполнимые фор­мулы.

Читайте также:
  1. Cложные полупроводники
  2. Cоветы служителям – 2. Необходимо правильно понимать вопрос о праведности по вере.
  3. ORTASINDA- ПОСРЕДИ, В СЕРЕДИНЕ
  4. А — процесс столкновения; б — неправильное определение угла ^ст
  5. А, так мормоны — единственные, кто дает на правильное дерево. Власти и всё такое.
  6. Артур Авалон понял почти правильно
  7. БОЛЕЗНЬ ЗАВИСИМОСТИ

Тождественно истинными называют формулы, принимающие значения истины при любых— истинных или ложных—значениях составляющих их пропозициональ­ных переменных. Такие формулы представляют собой законы логики.

Тождественно ложными называют формулы, принимающие значение ложности при любых — истинных или ложных — значениях пропозициональный переменных.

Выполненными называют формулы, которые могут принимать значения истин­ности или ложности в зависимости от наборов значений составляющих их пропозици­ональных переменных.

Табличное построение предполагает определение логических отношений между формулами. Существенное значение для анализа рассуждений имеет отношение логического следования (символ |—). которое определяется следующим образом. Из Ai,..., An как посылок логически следует В как заключение, если при истинности каждого Ai,..., An истинным является и В. В языке-объекте отношение следования адекватно выражается импликацией. Значит, если Ai,..., Ап г-В> то формула, пред­ставляющая собой импликацию вида (Ai л ai л... л An) —> В, должна быть тождест­венной истинной.

Табличное носгроение логики высказываний позволяет определять логические отношения между высказываниями (см. гл. V § 4) и проверять правильность умозак­лючений, используя приведенный выше критерий. В качестве примера предлагаем провести табличным способом проверку правильности рассуждения формулы (р —> q))- (1q —> 1p). Заменив знак логическою следования между посылкой и заклю­чением па импликацию и построив таблицу для полученной формулы, видим, что она является тождественно истинной. Значит, рассуждение является правильным.

Если в рассуждении содержится более трех переменных, то строить полную таблицу для проверки его правильности затруднительно и тогда используют сокра­щенный метод проверки, рассуждая от противного. Поскольку при правильном рас­суждении формула вида (Ai л... л An) —> В должна быть тождественно истинной, посмотрим, не может ли она при каком-то наборе значений неременных оказаться ложной. Допустим, что может. Если из этого допущения получим какое-нибудь про­тиворечие, то такое допущение будет неверным, а проверяемое рассуждение — пра­вильным. Если же из допущения не получаем противоречия, то обнаружим набор значений переменных, при котором формула ложна, т.е. тот набор, который опровер­гает проверяемое рассуждение.

Логика высказываний как исчисление это прежде всего так называемая систе­ма натурального вывода (СНВ). Аппаратом в ней служат правила вывода, каждое из которых является какой-нибудь элементарной формой умозаключения. Переходя по этим правилам от посылок или некоторых допущений к новым формулам, постепенно доходят до заключения. Вывод из посылок осуществлен, если удалось элиминировать все сделанные допущения. Таким образом, поавыводом формулы В (заключения) из формул Ai,..., А„ (посылок) имеется в виду последовательность формул, каждая из которых является либо посылкой, либо допущением, либо получается по правилам вывода из предыдущих, и последняя формула этой последовательности есть форму­ла В, а все допущения при этом элиминированы.

Правила СНВ позволяют оперировагь со всеми связками, имеющимися в алфа­вите языка. Они делятся на правила введения (в) и правила исключения (и) связок.

Конъюнкция:

Дизъюнкция:

А,В

АлВ

А

AvB

Импликация:

Отрицание:

Эквиваленция:

AvB

А

В-»А

НА ' А •

А=В

(А->В)л(В-»А) '

Кроме этих прямых правил получения новых строк вывода, в СНВ приняты непрямые правила, определяющие стратегию построения вывода. Например, если нужно вывести из посылок формулу вида импликации (xi —> (xz —>...(xn-i -> Хп))), то после выписывания посылок выписываются в качестве допущений все антецеденты заключения, начиная с антецедента главного знака импликации, т.е. xi, •m, хз,..., Xn-i. Г,А->В

Если при этом удастся вывести Хп, то по непрямому правилу -> в,

^собираем


Дата добавления: 2015-10-21; просмотров: 100 | Нарушение авторских прав


Читайте в этой же книге: Все S суть Р | А -Л О; ~[ А -> О; Е -> 11; -1 Е ->1. | Части предметов этого класса1. | Е правило: термин, не распределенный в посылке, не может бЫть распределен и в заключении. | Правила посылок. | Разновидности силлогизма, различающиеся количественными и качественными характеристиками посылок, называются моду­сами простого категорического силлогизма. | XRy л yRz) -> xRz. | Р -> q) л (q -> г) р —> г | Р -П q, р | Р ¥ q ¥ г, р |
<== предыдущая страница | следующая страница ==>
Сложные и сложносокращенные силлогизмы| Г-»А->В

mybiblioteka.su - 2015-2024 год. (0.007 сек.)