Читайте также: |
|
Вывод в чисто условном умозаключении основывается на правиле: следствие следствия есть следствие основания.
Умозаключение, в котором заключение получается из двух условных посылок, относится к простым. Однако заключение может следовать из большего числа посылок, которые образуют цепь условных суждений. Такие умозаключения называются сложными. Они будут рассмотрены в § 5.
Условно-категорическое умозаключение
Условно-категорическим называется умозаключение, в котором одна из посылок —условное, а другая посылка и заключение — категорические суждения.
Это умозаключение имеет два правильных модуса: 1) утверждающий и 2) отрицающий.
1. В утверждающем модусе (modus ponens) посылка, выраженная категорическим суждением, утверждает истинность основания условной посылки, а заключение утверждает истинность следствия;
рассуждение направлено от утверждения истинности основания к утверждению истинности следствия.
Например:
Если иск предъявлен недееспособным лицом (р), то суд оставляет иск
без рассмотрения (q)
Иск предъявлен недееспособным лицом (р)
Суд оставляет иск без рассмотрения (q)
Первая посылка — условное суждение, выражающее связь основания (р) и следствия (q). Вторая посылка — категорическое суждение, в котором утверждается истинность основания (р): иск предъявлен недееспособным лицом. Признав истинность основания (р), мы признаем истинность следствия (q): суд оставляет иск без рассмотрения.
10- IW2
Утверждающий модус дает достоверные выводы. Он имеет схему:
(1)Р^«'-Р.
2. В отрицающем модусе (modus tollens) посылка, выраженная категорическим суждением, отрицает истинность следствия условной посылки, а заключение отрицает истинность основания. Рассуждение направлено от отрицания истинности следствия к отрицанию истинности основания. Например:
Если иск предъявлен недееспособным лицом (р), то суд оставляет
иск без рассмотрения (q)
Суд не оставил иск без рассмотрения (не-q)
Неверно, что иск предъявлен недееспособным лицом (не-р)1 Схема отрицающего модуса:
пл р^ч^д. ^ "ip
Нетрудно установить, что возможны еще две разновидности условно-категорического силлогизма: от отрицания истинности основания к отрицанию истинности следствия (3) и от утверждения истинности следствия к утверждению истинности основания(4), т.е.:
(3) Р-^Р,
\ / ^Ч А
(4)-^Г- |
Однако заключение по этим модусам не будет достоверными Так, если в примере, приведенном выше, основание условной посылки отрицается: неверно, что иск предъявлен недееспособным лицом (схема 3), нельзя с достоверностью отрицать истинность следствия:
неверно, что суд оставляет иск без рассмотрения. Суд может оставить иск без рассмотрения и по другим обстоятельствам, например в результате истечения срока исковой давности.
Утверждение следствия: суд оставляет иск без рассмотрения (схема 4) не влечет с необходимостью истинность основания: суд
Поскольку двойное отрицание равнозначно утверждению, вывод можно записать так: «Иск предъявлен дееспособным лицом». Модусы могут быть представлены в записи:
1) ((р-щ) л р)-щ; 2) ((р-кО л-1 q)-»1 р; 3) ((р-к]) л1 р)-П q; 4) ((р-к)),
может оставить иск без рассмотрения не только в результате недееспособности истца, но и по другим причинам.
Итак, из четырех модусов условно-категорического умозаключения, исчерпывающих все возможные комбинации посылок, достоверные заключения дают два: утверждающий (modus ponens) (1) и отрицающий (modus tollens) (2). Они выражают законы логики и называются правильными модусами условно-категорического умозаключения. Эти модусы подчиняются правилу: утверждение основания ведет к утверждению следствия и отрицание следствия — к отрицанию основания. Два других модуса (3 и 4) достоверных заключений не дают. Они называются неправильными модусами и подчиняются правилу: отрицание основания не ведет с необходимостью к отрицанию следствия и утверждение следствия не ведет с необходимостью к утверждению основания.
Необходимость вывода по утверждающему и отрицающему модусам можно показать с помощью таблиц истинности.
Утверждающий модус (рис. 53).
Р | q | (p->q) лр ->q | ||
И | И | И | И | И |
И | л | Л | Л | и |
л | И | И | Л | и |
л | л | и | Л | и |
Рис. 53
Истинность импликации (столбик 3) зависит от истинности антецедента (основания) (1) и консеквента (следствия) (2). Импликация считается ложной тогда и только тогда, когда антецедент истинен, а консеквент ложен (2-я строка таблицы). Во всех остальных случаях импликация истинна. Истинность или ложность конъюнкции (4-й столбик) также зависит от составляющих ее членов (3 и 1). Конъюнкция истинна тогда и только тогда, когда истинны оба ее члена (1-я строка таблицы).
Теперь установим истинность импликации (5-й столбик таблицы — утверждающий модус). Так как импликация антецедента (4) и консеквента (2) не содержит случая, когда антецедент истинен, а консеквент ложен, то импликация всегда истинна. Следовательно, высказывание ((р —> q) л р) —> q является логическим законом.
Отрицающий модус (рис. 54).
В столбиках 1 и 3, 2 и 4 показано, что если одно высказывание ложно, то его отрицание истинно. Импликация р и q (1 и 2) ложна только в одном случае (2-я строка
таблицы) — столбик 5. Конъюнкция (столбик 6) высказываний (р—>ц) и I q (5 и 4) истинна только в одном случае (4-я строка таблицы). Импликация ((p—>q) л "1 q) и П р (6 и 3) всегда истинна, так как не содержит случая, когда антецедент истинен, а
консеквент ложен. Следовательно, высказывание ((p—»q) л Ч q)—> "1 р является логическим законом.
С помощью таблиц истинности можно показать недостоверность выводов по неправильным модусам.
р | q | IP | -iq | ((P->q) л-lq) ->-Ip | ||
и | И | Л | Л | И | Л | И |
и | Л | л | И | Л | Л | И |
л | И | и | Л | И | Л | и |
л | Л | и | И | И | и | и |
Рис.54 Ц|
При анализе условно-категорического умозаключения нужно иметь в виду следующее. Во-первых, основание и следствие большей посылки может быть как утвердительным, так и отрицательным суждением: р —> q; 1 р —> q; р —>~\ q; Ч р —>1 q. Например:
Если состав преступления отсутствует (р), то уголовное дело дАа| не может быть возбуждено (1 q) ' Щ Состав преступления отсутствует (р) ^В
Уголовное дело не может быть возбуждено f1 q) ^Щ
Следствие условной посылки — отрицательное суждение, категорическая посылка (утвердительное суждение) утверждает истинность основания, заключение (отрицательное суждение) утверждает истинность следствия, т.е.
Дата добавления: 2015-10-21; просмотров: 75 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
XRy л yRz) -> xRz. | | | Р -П q, р |