Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Расчёт верхней части колонны.

Читайте также:
  1. A) Частичное погашение долга заявителя.
  2. I.Задания части А
  3. II. Основна частина. 1 страница
  4. II. Основна частина. 2 страница
  5. II. Основна частина. 3 страница
  6. II. Основна частина. 4 страница
  7. V. Расчёт и конструирование подкрановой балки.

Таблица 10

Нагрузки в надкрановой части колонны.

Сочетания +Mmax, Ns - Mmax, Ns Nmax, |Ms|
Сечение M N M N M N
B 114,61 -296,9 -873,6 -395,3 42,2 -395,3
Cv 853,28 -454 -318,9 -552,5 746,1 -552,5

M=853,28 кН·м, N=454 кН

Рис. 23 Расчётное сечение колонны.

ix≈0,43hv=0,43·1=0,43 м=43см

ρx≈0,35hv=0,35·1=35см

[табл]

[прил. 10]=> η=(1,9-0,1m)-0,02(6-m) =(1,9-0,1·4,37)-0,02(6-4,37) ·1,43=1,416

=1,416·4,37=6,188

По прил. 8 φe=0,20371

 

Требуемая площадь сечения:

см2

Компоновка сечения:

Задаюсь толщиной полки tf=12 мм,

Высота стенки hw=hv-2·tf=100-2·1,2=97,6 см

Из условия устойчивости стенки определяю её толщину:

Т.к. , то

[tw]=97,6/47,07=2,07см

Ограничивая рабочую часть стенки принимаю tw=10мм (устойчивость стенки не обеспечивается, поэтому за рабочее сечение стенки принимаем 2сtw)

- > c=24см

см2

Принимаю tf=1,2см,

м

Из условия устойчивости верхней части колонны из плоскости действия момента ширина полки

Принимаю

Рис. 24. Сечение колонны.

Геометрические характеристики сечения.

A=2·32·1,2+1·97,6=174,4 см2

A0=2Af+2ctw=2·32·1,2+2·24·1=124,8 см2

см4

см4

см3

Проверка устойчивости верхней части колонны в плоскости действия момента.

Проверку устойчивости сплошной внецентренно сжатой колонны выполняем по формуле , где φе – коэффициент снижения расчетного сопротивления при внецентренном сжатии зависит от условной гибкости стержня и приведенного эксцентриситета.

При

При η=1,25

Для η=1,318

=1,318·6,19=8,15

По прил. 8 φe=0,1606

Условие местной устойчивости полки:

 

Проверка устойчивости верхней части колонны из плоскости действия момента.

Проверку устойчивости из плоскости действия момента выполняем по следующей формуле

Рис. 25. Определение расчётного сечения.

Расчётный момент принимается М ≥ 0,5Mmax=853,28 кН·м

Принимаю М=426,64, N=407,63 кН

φy=0,629

При mx=5: c=β/(1+α·mx)=1/(1+0,959·6,19)=0,144

При mx=10: c=1/(1+ mxφy)=1/(1+6,19·0,629)=0,204

По прил. 11.

С=С5(2-0,2mx)+C10(0,2mx-1)=0,144(2-0,2·6,19)+0,204(0,2·6,19-1)=0,158

Т.к. α>1 то

Т.к. то в расчетное сечение включаем полное сечение стенки

 


Дата добавления: 2015-09-06; просмотров: 140 | Нарушение авторских прав


Читайте в этой же книге: Введение. | Сбор нагрузок на поперечную раму. | Статический расчёт рамы | Сбор нагрузок на ферму | Статический расчёт фермы | Подбор сечения стержней фермы. | И нижней частей колонны. | Расчёт и конструирование базы колонны. | V. Расчёт и конструирование подкрановой балки. | Подбор сечения подкрановой балки. |
<== предыдущая страница | следующая страница ==>
Конструирование фермы.| Расчёт подкрановой части колонны.

mybiblioteka.su - 2015-2024 год. (0.017 сек.)