Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Coefficients

  Least Squares Standard T  
Parameter Estimate Error Statistic P-Value
Intercept 5,58154 0,00870724 641,024 0,0000
Slope -0,100216 0,000726866 -137,874 0,0000

 

NOTE: intercept = ln(a)

Analysis of Variance

Source Sum of Squares Df Mean Square F-Ratio P-Value
Model 6,67878   6,67878 19009,32 0,0000
Residual 0,00632416   0,000351342    
Total (Corr.) 6,6851        

 

Correlation Coefficient = -0,999527

R-squared = 99,9054 percent

R-squared (adjusted for d.f.) = 99,9001 percent

Standard Error of Est. = 0,0187441

Mean absolute error = 0,013798

Durbin-Watson statistic = 2,09645 (P=0,4849)

Lag 1 residual autocorrelation = -0,0532291

 

The StatAdvisor

The output shows the results of fitting an exponential model to describe the relationship between В and N. The equation of the fitted model is

 

В = exp(5,58154 - 0,100216*N)

 

Since the P-value in the ANOVA table is less than 0,05, there is a statistically significant relationship between В and N at the 95,0% confidence level.

 

The R-Squared statistic indicates that the model as fitted explains 99,9054% of the variability in В after transforming to a reciprocal scale to linearize the model. The correlation coefficient equals -0,999527, indicating a relatively strong relationship between the variables. The standard error of the estimate shows the standard deviation of the residuals to be 0,0187441. This value can be used to construct prediction limits for new observations by selecting the Forecasts option from the text menu.

 

The mean absolute error (MAE) of 0,013798 is the average value of the residuals. The Durbin-Watson (DW) statistic tests the residuals to determine if there is any significant correlation based on the order in which they occur in your data file. Since the P-value is greater than 0,05, there is no indication of serial autocorrelation in the residuals at the 95,0% confidence level.

Comparison of Alternative Models

Model Correlation R-Squared
Exponential -0,9995 99,91%
Reciprocal-Y squared-X 0,9988 99,77%
Square root-X -0,9965 99,30%
Squared-Y logarithmic-X -0,9938 98,76%
Square root-Y -0,9926 98,52%
Logarithmic-X -0,9863 97,29%
Logarithmic-Y square root-X -0,9841 96,84%
Logarithmic-Y squared-X -0,9729 94,65%
Linear -0,9710 94,28%
Reciprocal-Y 0,9677 93,64%
Squared-Y square root-X -0,9608 92,32%
Square root-Y squared-X -0,9361 87,63%
Multiplicative -0,9284 86,20%
Squared-Y reciprocal-X 0,9085 82,54%
Squared-Y -0,9010 81,18%
Squared-X -0,8874 78,76%
Reciprocal-Y logarithmic-X 0,8269 68,38%
Reciprocal-X 0,8257 68,17%
Double squared -0,7774 60,44%
Square root-Y reciprocal-X 0,7687 59,10%
S-curve model 0,7040 49,55%
Double reciprocal -0,5699 32,48%
Double square root <no fit>  
Reciprocal-Y square root-X <no fit>  
Square root-Y logarithmic-X <no fit>  
Logistic <no fit>  
Log probit <no fit>  

 


Дата добавления: 2015-09-06; просмотров: 104 | Нарушение авторских прав


Читайте в этой же книге: Свойства медианы | Графическое определение медианы | Степень свободы параметра | Экспериментальные данные каждой переменной, необходимые для анализа. | Методы точечного оценивания | Критерий Кохрэна | The StatAdvisor | Методы корреляционно-регрессионного анализа | Линейная регрессия и метод наименьших квадратов | Коэффициент детерминации |
<== предыдущая страница | следующая страница ==>
Analysis of Variance| Больно. ru 1 страница

mybiblioteka.su - 2015-2025 год. (0.005 сек.)