Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Как выяснить взаимное расположение прямой и плоскости?

Читайте также:
  1. Q]3:1: Найти уравнение прямой, проходящей через точку А(2;3) параллельно оси ОУ
  2. Q]3:1: Общие уравнения прямой в пространстве
  3. VI. СТРЕЛЬБА ПРЯМОЙ НАВОДКОИ
  4. А) комбинируйте непрямой массаж сердца и вентиляцию легких
  5. Анализ движения денежных средств (прямой метод)
  6. Аналитическое выравнивание по прямой
  7. БЛАГОРАСПОЛОЖЕНИЕ

Изучим аналитические условия, которые позволят нам ответить на данный вопрос. Выполним схематический чертёж, на котором прямая пересекает плоскость:

Прямая пересекает плоскость тогда и только тогда, когда её направляющий вектор не ортогонален вектору нормали плоскости.

Из утверждения следует, что скалярное произведение вектора нормали и направляющего вектора будет отлично от нуля: .

В координатах условие запишется следующим образом:

Если же данные векторы ортогональны, то есть если их скалярное произведение равно нулю: , то прямая либо параллельна плоскости, либо лежит в ней:

Разграничим данные случаи.

Если прямая параллельна плоскости, то точка (а, значит, и ЛЮБАЯ точка данной прямой) не удовлетворяет уравнению плоскости: .

Таким образом, условие параллельности прямой и плоскости записывается следующей системой:

Если прямая лежит в плоскости, то точка (а, значит, и ЛЮБАЯ точка данной прямой) удовлетворяет уравнению плоскости: .

Аналитические условия данного случая запишутся похожей системой:

Разборки с взаимным расположением прямой и плоскости достаточно примитивны – всего в два шага. Кроме того, на практике можно обойтись даже без всяких систем. Исследование взаимного расположения прямых в пространстве, которое проводилось на уроке Задачи с прямой в пространстве, намного трудозатратнее

12) Цель преобразований: ГО общего положения путем преобразования проекции привести к частному положению для упрощения решения метрических задач (нахождение площади, расстояния, углов).


Дата добавления: 2015-08-13; просмотров: 109 | Нарушение авторских прав


Читайте в этой же книге: Свойство 2. Проекция прямой есть прямая. | Светотенью называется наблюдаемое в натуре распределение света на поверхности предмета. | Цилиндр | Обозначение разрезов |
<== предыдущая страница | следующая страница ==>
Две прямоугольные проекции точки однозначно определяют её положение в пространстве относительно плоскостей проекций.| Способ вращения

mybiblioteka.su - 2015-2024 год. (0.006 сек.)