Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Способы построения очерков кривых поверхностей.

Читайте также:
  1. II. Понятие и принципы построения управленческих структур.
  2. IV. Принципы построения сюжета
  3. VII. Способы включения в ход действия новых лиц
  4. X. Способы выживания
  5. А. Построение диаграмм функций полезности, предельных полезностей и кривых безразличия в Excel
  6. А. Способы сочетания рассказов
  7. Агрегатный способ построения общего индекса

Заданные на чертеже кривые поверхности являются главным образом поверхностями второго порядка. Их очерками /проекциями видимых контуров/ являются кривые второго порядка: эллипс, гипербола или парабола, а также окружности и прямые линии. Для точного построения очерков этих поверхностей нужно с задания перенести на эпюр характерные точки очерков заданных тел: вершины, точки на основаниях фигур и т.п.

1.2 Построение эллипса по его осям АА1 и ВВ1 /рис.2/.


Рис.2

 
 
Рис.2


1i-2i // P-Q
1.2. Построение гиперболы по ее вершинам А и А1 и точке М /рис.3/.

 
 

 

1.3 Построение параболы по ее вершине A, точке M и оси I /рис.4/.

 
 

 

Более подробно о способах построения кривых линий второго порядка смотрите в литературе /1, 2/.


Построение очерков поверхностей вращения, оси которых параллельны одной из плоскостей проекций

Задачи на построение очерков поверхностей вращения, оси которых параллельны одной из плоскостей проекций и наклонены к другим плоскостям проекций решаются с помощью вспомогательных сфер, которые выбираются касающимися заданной поверхности вращения вдоль ее параллелей.

Пример 1.4.1./рис.5/. Построить профильную проекцию конуса вращения, ось i которого параллельна фронтальной плоскости проекций и наклонена к двум другим плоскостям проекций.

Для построения образующих поверхности конуса на профильной плоскости проекций воспользуемся вспомогательной сферой с центром в точке 0" и касательной к конической поверхности по параллели Т"Т1". Профильная проекция сферы, описанная из точки 0", позволит провести касательные S"' К"' и S"'K1"' известными из планиметрии геометрическими приемами

 
 

Профильную проекцию основания конуса - эллипс А"' В"' А1"' В1"' - можно построить по его главным осям, одним из известных способов, один из которых показан на чертеже.

Пример 1.4.2./рис.6/. Построить профильную проекцию отсека параболоида вращения, ось i которого параллельна фронтальной плоскости проекций и наклонена к двум другим плоскостям проекций под некоторыми углами.

Как известно, очерком поверхности второго порядка в общем случае является линия второго порядка, представляющая собой плоскую кривую /в данном случае - параболу/.

Очерк фронтальной проекции параболоида вращения - парабола М"Мi"А"М1" на чертеже построен с помощью найденных промежуточных точек типа Мi" указанным на чертеже способом.


Проекция поверхности параболоида вращения на профильной плоскости проекций определяется очерком Т"' Ni"' K"' T1"' представляющим собой параболу, промежуточные точки этого очерка - точки типа Ni"' - найдены тем же приемом, что и точки типа Mi".

Точку К" можно найти с помощью сопряженного диаметра параболы Q" Q1", найдя середину которого - точку R", можно провести другой, сопряженный с первым, диаметр параболы К" Т", проходящий через точку R" и параллельный оси i" параболы М", Mi", А", К", M1", найдя профильные проекции точек Т " и T1" на очерке основания отсека параболоида вращения.

Для нахождения точки K" можно воспользоваться свойством касательной к параболе, для которой характерно то, что проекция касательной на ось параболы /подкасательная/ делится вершиной А" параболы пополам. Таким образом, отмерив от точки А" по направлению оси i" параболоида отрезок А"2" равный отрезку 1"А". Найдя точку 2" и восстановив из нее перпендикуляр к оси i", можно найти точку K", через которую и пройдет контурная линия K"T"=T1" поверхности параболоида вращения при построении очерка этой поверхности на профильной плоскости проекций. Эта линия будет границей видимости поверхности параболоида вращения на профильной плоскости проекций.

Зная точки К", Т" и Т1" можно построить очерк отсека параболоида вращения на профильной плоскости проекций известным способом, показанным на чертеже.

Пример,1.4.3. /рис.7/. Построить профильную проекцию отсека закрытого тора, ось i" которого параллельна фронтальной плоскости проекций и наклонена к профильной плоскости проекций под некоторым углом. Образующая тора - дуга A"1"S" окружности радиуса А"С1" = А1"С".

Для решения задачи воспользуемся методом вспомогательных сфер с центрами в точках 0", 01", 02"..., вписанных в поверхность отсека тора. Например, сфера с центром в точке 0" касается очерка тора в точках 1" и 11" а его поверхности - по параллели диаметра 1"11". Эта параллель пересечет меридиан 2"21" сферы, параллельный профильной плоскости проекций, в точках К" и К1", профильные проекции К" и К1" которых соответствующей проекции этого меридиана будут принадлежать очерку профильной проекции отсека закрытого тора.


 


Найдя аналогичным способом точки L" и L1", N" и N1", S"', можно построить огибающую профильных проекций вписанных в отсек закрытого тора сфер - кривую В"', K"', L"', N"', S"', L1"', К1"', В"1 - очерк отсека тора на профильной плоскости проекций.

Контурной линией этого очерка на фронтальной проекции тора будет линия В"=B1", К"=К1", L"=L1", N"=N1", S" являющаяся границей видимости профильной проекции отсека тора.


Дата добавления: 2015-08-18; просмотров: 336 | Нарушение авторских прав


Читайте в этой же книге: Указать основные способы решения задач на взаимное пересечение двух поверхностей при различном их расположении и сочетании. | Показать основные приемы построения разверток кривых поверхностей и нанесения на них найденной линии пересечения. | Рассмотрим примеры применения указанных способов. | Построение аналогично решению предыдущей задачи и понятно из приведенного чертежа. | Способ вспомогательных секущих эксцентрических сфер | Если на поверхности цилиндра расположена какая-либо линия, то на развертку цилиндра эту линию можно перенести по точкам, принадлежащим соответствующим образующим этой поверхности. |
<== предыдущая страница | следующая страница ==>
Работу следует начать с выделения на листе бумаги формата будущего эпюра, как и при выполнении предыдущих работ, выделив в нем место основной надписи.| Проецирование линии пересечения двух поверхностей вращения второго порядка на плоскость, параллельную их общей плоскости симметрии, встречающиеся в домашнем задании эпюр №З.

mybiblioteka.su - 2015-2024 год. (0.014 сек.)