Читайте также: |
|
1. В определении 1.1 точка х * сравнивается по величине функции со всеми точками из множества допустимых решений X, а в определении 1.2 — только с принадлежащими ее ε-окрестности (рис. 1.2).
Рис. 1.2
Если в определениях 1.1 и 1.2 знак неравенства ≤, заменить на ≥, то получатся определения глобального (абсолютного) и локального (относительного) максимумов.
Глобальный экстремум всегда является одновременно локальным, но не наоборот.
Определение 1. 3. Поверхностью уровня функции f (х) называется множество точек, в которых функция принимает постоянное значение, т. е. f (х) = const. Если п = 2, поверхность уровня изображается линией уровня на плоскости R 2.
Определение 1. 4. Градиентом ∇ f (х) непрерывно дифференцируемой функции f (x) в точке х называется вектор-столбец, элементами которого являются частные производные первого порядка, вычисленные в данной точке:
Градиент функции направлен по нормали к поверхности уровня (см. определение 1.3), т. е. перпендикулярно к касательной плоскости, проведенной в точке х, в сторону наибольшего возрастания функции в данной точке.
Определение 1. 5. Матрицей Гессе H (х) дважды непрерывно дифференцируемой в точке х функции f (х) называется матрица частных производных второго порядка, вычисленных в данной точке:
где
Дата добавления: 2015-08-03; просмотров: 141 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Замечания 1.1. | | | Замечания 1.3. |