Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Теорема Гюйгенса-Штейнера

Читайте также:
  1. Билет 28. Магнитное поле в веществе. Магнитные моменты атомов и молекул (орбитальный, спиновый и прецессионный). Типы магнетиков. Теорема Лармора
  2. Внешние эффекты. Положит. и отрицат. внешн. эффекты и проблема эффективного размещения ресурсов в рын. экономике. Теорема Коуза
  3. Магнитное поле. Вектор магнитной индукции. Опыт Эрстеда. Магнитный поток. Теорема Остроградского-Гаусса. Магнитный момент контура с током. Графическое изображение магнитных полей.
  4. Поток вектора. Поток вектора напряженности и Эл. Смещения. Расчет потока вектора E и D поля точечного заряда. Теорема Остроградского-Гаусса
  5. Счетные множества. Теорема о существовании подмножества в бесконечном множестве
  6. Теорема 1
  7. Теорема 1 (о нетривиальных решениях однородной системы)

Основная статья: Теорема Штейнера

Момент инерции твёрдого тела относительно какой-либо оси зависит не только от массы, формы и размеров тела, но также от положения тела по отношению к этой оси. Согласно теореме Штейнера (теореме Гюйгенса-Штейнера), момент инерции тела J относительно произвольной оси равен сумме момента инерции этого тела Jc относительно оси, проходящей через центр масс тела параллельно рассматриваемой оси, и произведения массы тела m на квадрат расстояния d между осями:

Если — момент инерции тела относительно оси, проходящей через центр масс тела, то момент инерции относительно параллельной оси, расположенной на расстоянии от неё, равен

,

где — полная масса тела.

Например, момент инерции стержня относительно оси, проходящей через его конец, равен:

17. Кинетическая энергия вращения.


Кинетическая энергия вращения

 

Возьмем абсолютно твердое тело, вращающееся около неподвижной оси z, проходящей через него (рис. 1). Разобьем тело на маленькие объемы с элементарными массами m1, m2,..., mn, находящиеся на расстоянии r1, r2,..., rn от оси.
При вращении твердого тела относительно неподвижной оси каждый из его элементарных объемов массами mi опишет окружность соответствующих радиусов ri; при этом объем будет иметь соответствующую линейную скорость vi..

 

18. Момент силы.

Итак, для равновесия тела, закрепленного на оси, существенна не сама величина силы, а произведение проекции силы на направление, перпендикулярное к радиусу, проведенному к точке приложения силы, на расстояние этой точки от оси. Это произведение будем называть моментом силы относительно данной оси или просто моментом силы (рис. 116). Моменты разных сил, приложенных к одной точке, равны, если равны проекции этих сил на направление, перпендикулярное к радиусу данной точки

19. Основное уравнение динамики.

Используя понятие массы, можно представить соотношение между силой (причиной) и ускорением (следствием).

Если:
F — сила вызывающая ускорение тела (Ньютон),
m — масса тела, (килограмм),
a — приобретенное телом ускорение, (метр/секунда²),
То:


Дата добавления: 2015-07-24; просмотров: 175 | Нарушение авторских прав


Читайте в этой же книге: Кинематические характеристики движения материальной точки. | Классификация движения материальной точки. Абсолютно твердое тело. Виды движения твердого тела. | Три закона динамики Ньютона. | Закон всемирного тяготения. Гравитационное поле. | Сила трения. | Гармонические колебания и их характеристики. Уравнение гармонический колебаний | Свободные колебания пружинного маятника. Энергия колебания | Свободные колебания физического и математического маятника. | Упругие волны. Описание волны. Уравнение волны. Волновое равнение | Энергия волны |
<== предыдущая страница | следующая страница ==>
Физический смысл| Момент импульса

mybiblioteka.su - 2015-2025 год. (0.005 сек.)