Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Дифференциальное уравнение гармонических колебаний

Читайте также:
  1. Билет 33. Затухающие электромагнитные колебания. Дифференциальное уравнение затухающих колебаний и его решение. Апериодический разряд
  2. Билет 34. Дифференциальное уравнение вынужденных колебаний и его решение. Амплитуда и фаза вынужденных колебаний. Резонанс
  3. Векторное изображение гармонических функций
  4. Вывести параметрическое и каноническое уравнение прямой на плоскости.
  5. Гармонические колебания и их характеристики. Уравнение гармонический колебаний
  6. Динамика гармонических колебаний пружинного маятника.
  7. Дифференциальное исчисление функции

Пусть некоторая физическая величина S совершает гармонические колебания (1). Легко показать, что вторая производная по времен от S равна . С учетом (1) получаем, что , т.е.

. (3)

Итак, можно сделать вывод: если величина S изменяется по гармоническому закону (1), то отсюда следует справедливость равенства (3). В математике показывается и обратное: если для величины S = S(t) справедливо равенство (3) при всех допустимых значениях t, то S(t) имеет только вид (1) и никакой другой. Причем А и в (1) есть произвольные постоянные, конкретные значения которых зависят от так называемых начальных условий, т. е. от значений S и ее производной S' в некоторый момент времени t (обычно при t = 0 ).

Равенство (3) называют дифференциальным уравнением гармонических колебаний.

Таким образом, мы получили чрезвычайно важное утверждение:

если с помощью законов физики для физической величины S удалось записать дифференциальное уравнение вида , то отсюда будет следовать, что S изменяется обязательно, по гармоническому закону с циклической частотой (). Конкретные значения амплитуды А и начальной фазы зависят от начальных условий.

Заметим, что в (3) стоит величина , которая всегда положительна. Поэтому, например, уравнение не будет дифференциальным уравнением гармонических колебаний, т.к. не найдется такого действительного значения , для которого было бы равно «– 6».


Дата добавления: 2015-07-24; просмотров: 161 | Нарушение авторских прав


Читайте в этой же книге: Колебания | Периодические колебания | Пружинный маятник | Динамика движения математического маятника. | Ускорение свободного падения. |
<== предыдущая страница | следующая страница ==>
Гармонические колебания| Свободные и собственные колебания. Затухание.

mybiblioteka.su - 2015-2024 год. (0.006 сек.)