Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Механические колебания и волны.

Читайте также:
  1. I. Колебания цен сырья, непосредственное влияние их на норму прибыли
  2. V2: Гармонические колебания
  3. Автоколебания.
  4. Амплитуду А и начальную фазу j0 суммарного колебания нужно находить как модуль и угол поворота суммарного радиус-вектора, пользуясь правилами геометрии.
  5. Билет 33. Затухающие электромагнитные колебания. Дифференциальное уравнение затухающих колебаний и его решение. Апериодический разряд
  6. Вакуумные колебания при химическом возбуждении атомов, молекул и хаотичность силовых линий электромагнитного и гравитационного поля.
  7. Вынужденные электромагнитные колебания

; ; – смещение из положения равновесия, скорость и ускорение колеблющейся точки;

– дифференциальное уравнение гармонических колебаний;

– возвращающая сила при гармонических колебаниях;

; ; ; – период колебаний пружинного, математического, физического и крутильного маятников (здесь – модуль кручения);

; – закон сохранения энергии;

; – амплитуда и начальная фаза результирующего колебания при сложении однонаправленных колебаний одинаковой частоты;

– уравнение траектории точки, колеблющейся с одинаковыми частотами в перпендикулярных направлениях;

– дифференциальное уравнение затухающих колебаний;

– круговая частота собственных незатухающих колебаний;

– коэффициент затухания;

– сила сопротивления при затухающих колебаниях;

– уравнение затухающих колебаний;

– круговая частота затухающих колебаний;

– амплитуда затухающих колебаний;

– логарифмический декремент затухания;

– добротность;

(здесь ) – дифференциальное уравнение вынужденных колебаний;

; ; – смещение из положения равновесия, амплитуда и фаза вынужденных колебаний; – резонансная частота;

, – уравнения плоской и сферической волн;

– волновое число (волновой вектор);

– длина волны;

; – скорость распространения продольных и поперечных волн в твердом теле;

– скорость звука в газе (для воздуха );

– скорость распространения поперечной волны по струне.

Примеры решения задач.

Задача 8.

Найтичастотуколебанийгрузамассой m =0.2 кг, подвешенногонапружинеипомещенноговмасло,если коэффициентсопротивлениявмасле r =0.5кг/с,акоэффициент жесткости пружины k =50 Н/м.

Решение

Колебания груза в масле являются затухающими, их круговая частота:

,

где – круговая частота собственных незатухающих колебаний; – коэффициент затухания. Тогда частота затухающих колебаний .

Ответ: ν.=2.51 Гц.

 

181. Складываются два колебания одного направления и одной частоты: x1=sin(pt) и x2=sin(p(t+0.5)) (смещение из положения равновесия - в метрах, время – в секундах). Определить амплитуду и начальную фазу результирующего колебания, написать уравнение колебания.

182. Точка совершает гармонические колебания по закону синуса. В некоторый момент времени смещение точки было равно 7 см. При увеличении фазы вдвое смещение точки стало 12 см. Найти амплитуду колебаний.

183. Написать уравнение гармонических колебаний, если максимальное ускорение точки 49.3 см/с2, период колебаний 2 с, смещение точки из положения равновесия в начальный момент времени 25 мм.

184. Амплитуда колебаний материальной точки массой 3 г равна 15 см, круговая частота 10 рад/с. Определить максимальную величину возвращающей силы и максимальную кинетическую энергию точки.

185. На тело, совершающее гармонические колебания с периодом 1 с и начальной фазой p/6, действует максимальная возвращающая сила 17.5 Н. При этом полная энергия колебаний 2.85 Дж. Написать уравнение колебаний. Колебания происходят по закону косинуса.

186. Материальная точка совершает гармонические колебания, уравнение которых имеет вид: x=0.1sin(5pt) (смещение из положения равновесия - в метрах, время – в секундах). Масса точки 50 г. Найти силу, действующую на точку: 1) в тот момент, когда фаза колебаний равна 300; 2) в положении наибольшего отклонения точки.

187. Математический маятник массой 100 г совершает гармонические колебания по закону x=0.25sin(2pt) (смещение из положения равновесия - в метрах, время – в секундах). Определить натяжение нити в момент времени t=T/2.

188. Точка совершает гармонические колебания, уравнение которых имеет вид: x=0.05sin(2t) (смещение из положения равновесия - в метрах, время – в секундах). В момент, когда на точку действовала возвращающая сила 5 мН, точка обладала потенциальной энергией 0.1 мДж. Найти фазу колебаний в этот момент времени.

189. Логарифмический декремент затухания математического маятника равен 0.2. Найти, во сколько раз уменьшится амплитуда колебаний за одно полное колебание, то есть за время t=T.

190. Чему равен логарифмический декремент затухания математического маятника, если за 1 минуту амплитуда колебаний уменьшилась в два раза? Длина маятника 1 м.

191. Логарифмический декремент затухания колебаний маятника равен 0.003. Сколько полных колебаний должен сделать маятник, чтобы амплитуда уменьшилась в 2 раза?

192. Плоская волна с периодом 1.2 с и амплитудой 2 см распространяется со скоростью 15 м/с. Чему равно смещение точки, находящейся на расстоянии 45 м от источника волн в тот момент, когда от начала колебаний источника прошло 4 с?

193. Плоская звуковая волна распространяется в воздухе при н.у. вдоль прямой со скоростью 20 м/с. Две точки, находящиеся на этой прямой на расстоянии 12 м и 15 м от источника, колеблются с разностью фаз 0.75p. Найти длину волны, написать уравнение волны и найти смещение обеих указанных точек в момент времени, равный 1.2 с, если амплитуда колебаний 10 см.

194. Смещение от положения равновесия точки, находящейся на расстоянии 4 см от источника колебаний, колеблющегося по закону: x=sin(ωt),в момент времени t=T/6 равно половине амплитуды. Найти длину волны. Волна плоская.

195. К неподвижной опоре подвесили пружину жесткостью К =100 Н/м с грузом массой m=50 г. Пружину растянули на 10 см и, отпуская, подтолкнули вдоль оси пружины в направлении положения равновесия, сообщив грузу скорость υ0=2 м/с. Далее пружина с грузом предоставлены сами себе. Записать уравнение колебаний, определить амплитуду колебаний. Сопротивлением среды пренебречь.

196. Определить разность фаз колебаний двух точек среды, находящихся на расстоянии 0.1 м друг от друга, если в среде распространяется плоская волна вдоль линии, соединяющей эти точки. Скорость распространения волны v=340 м/с, частота колебаний источника 1000 Гц.

197. При сложении двух одинаково направленных гармонических колебаний с одинаковой частотой и амплитудами, равными 0.02 и 0.04 м, получается гармоническое колебание с амплитудой 0.05 м. Найти разность фаз складываемых колебаний.

198. На тонкой нити длиной 1 м подвешен шар радиуса r=0.1 м. Определить относительную погрешность в определении периода колебаний, если маятник считать математическим.

199. Период затухающих колебаний 4 с, логарифмический декремент затухания 1.6, начальная фаза равна нулю. Смещение точки из положения равновесия в момент времени t=T/4 равно 4.5 см. Написать уравнение этого колебания. Колебания происходят по закону синуса.

200. Для звуковой волны, описываемой уравнением , где амплитуда выражена в метрах, круговая частота – в с-1, волновое число – в м-1, найти: а) амплитуду скорости частиц среды и ее отношение к скорости распространения волны; б) отношение амплитуды смещения частиц среды к длине волны.

201. Период колебаний крутильного маятника, состоящего из тонкого кольца массой 5.10-2 кг, соединенного спиральной пружиной с осью вращения, равен Т=4 с. Определить радиус кольца при жесткости пружины K =10-2 Н.м. Трением пренебречь.

202. Начальная амплитуда колебаний математического маятника А 0=0.2 м. Амплитуда после 10 полных колебаний А 10=0.01 м. Определить логарифмический декремент затухания и коэффициент затухания, если период колебаний Т=5 с. Записать уравнение колебаний.

203. Однородный стержень совершает малые колебания в вертикальной плоскости около горизонтальной оси, проходящей через его верхний конец. Длина стержня 50 см. Найти период колебаний стержня.

204. Ось вращения стержня проходит на расстоянии 10 см от его конца. Длина стержня 50 см. Найти период малых колебаний.

205. Обруч диаметром 56.5 см висит на гвозде, вбитом в стену, и совершает малые колебания в плоскости, параллельной стене. Найти период колебаний обруча.

206. #Однородный диск радиусом R подвешен за край. Чему равна частота его малых колебаний относительно точки подвеса?

207. # Период колебаний крутильного маятника Т1=4 с. Если на расстоянии R=0.5 м от оси колебаний к нему прикрепить шар массой m=0.3 кг, причем радиус шара много меньше расстояния R, то период колебаний станет равным Т2=8 с. Определить момент инерции маятника.

208. # Амплитуда затухающих колебаний математического маятника за 1 минуту уменьшилась вдвое. Во сколько раз она уменьшится за 3 минуты?

209. # Математический маятник длиной 24.7 см совершает затухающие колебания. Через сколько времени энергия колебаний маятника уменьшится в 9.4 раза? Логарифмический декремент затухания равен 1.

210. # Звуковые колебания с частотой 500 Гц и амплитудой 0.25 мм распространяются в воздухе. Длина волны 70 см. Найти скорость распространения колебаний и максимальную скорость частиц воздуха.


Дата добавления: 2015-07-20; просмотров: 437 | Нарушение авторских прав


Читайте в этой же книге: Требования к оформлению и общие методические указания по выполнению индивидуальных домашних заданий. | Примеры решения задач | Динамика. Работа, энергия. Законы сохранения. | Примеры решения задач | Примеры решения задач. | Теория относительности. | Механика жидкостей и газов. |
<== предыдущая страница | следующая страница ==>
Упругие свойства твердых тел.| Акустика.

mybiblioteka.su - 2015-2024 год. (0.015 сек.)