Читайте также:
|
|
Если функция, непрерывная на сегменте [ a; b ] и дифференцируемая на интервале (a; b), принимает на концах этого интервала одинаковые значения, то на этом интервале найдётся хотя бы одна точка, в которой производная функции равна нулю.
док-во:
Если функция на отрезке постоянна, то утверждение очевидно, поскольку производная функции равна нулю в любой точке интервала.
Если же нет, поскольку значения функции в граничных точках сегмента равны, то согласно теореме Вейерштрасса, она принимает своё наибольшее или наименьшее значение в некоторой точке интервала, то есть имеет в этой точке локальный экстремум, и по лемме Ферма, в этой точке производная равна 0.
Теорема Лагранжа. (из шпор)
Если функция f(x) непрерывна на [a,b] и дефференцирована на (a,b), то сущест.
т. с(a,b), такая, что: f(b)-f(a)=f’(c)(b-a).
Доказательство: применим т.Коши, взяв только g(x)=x, тогда g’(x)=1¹0.
Теорема Коши. (из шпор)
Если f(x), g(x) удовл. трем условиям:
1). f(x), g(x) непрерыв. на промеж [a,b]
2). f(x), g(x) деффер. на интервале (a,b)
3). g’(x)¹0 на интер. (a,b), то сущ. т. с
g(b)¹g(a) (неравны по теореме Ролля).
1). F(x) – непрерывна на [a,b]
2). F(x) – деффиренцирована на (a,b)
3). F(a)=0; F(b)=0
по теореме Ролля сущ. сÎ(a,b); F’(с)=0
Дата добавления: 2015-07-20; просмотров: 99 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Государственные ценные бумаги: понятие, цели выпуска. Правовые основы эмиссии и обращения государственных ценных бумаг РФ. | | | ЧАСТЬ ЧЕТВЕРТАЯ. Процессы обеспечения качества обслуживания. |