Читайте также: |
|
1.Так как у нас ряд представлен в виде вариант (тарифный разряд) и частот (количество работников) с различным удельным весом то используем среднюю арифметическую взвешенную.
(разряд)
Средина ряда находится между 3 и 4 разрядом работников.
Показатели вариации: 1.Дисперсия – это квадраты отклонений вариант от средних
Взвешенная 2.Среднеквадратическое отклонение – корень квадратный из дисперсии
3.Коэфициент вариации. Показатель вариации характеризует абсолютную колеблемость признака. Для характеристики и сравнения колеблемости признаков или колеблемости разных показателей первой совокупности необходимо использовать относительные показатели вариации.
Так как коэффициент вариации превышает 30% это означает, что признак имеет высокую колеблемость.
Структурные средние – мода и медиана. Мода – величина признака (варианта) чаще всего встречающаяся в данной совокупности (варианта имеющая наибольшую частоту). Медиана – варианта, которая находится в середине упорядоченного вариационного ряда. Она дели ряд пополам.
Мода: М0 = 4(разряд) Медиана:
Ме = 4(разряд)
В данном случае средняя арифметическая взвешенная совпала с модой и медианой. Наиболее часто встречающийся разряд 4 и средина упорядоченного ряда находится в 4 разряде.
2. φ = 0,997 t = 3 N = 3000 n = 300 Определим ошибку, и пределы, в которых находится средний тарифный разряд работников по следующим формулам
ошибка пределы разряда
С вероятностью 0,997 можно гарантировать что средний тарифный разряд работников генеральной совокупности будет находится в пределах [3,6; 4] разряд и только в 3 случаях из 1000 случаев отбора он может выйти за эти пределы.
3. φ = 0,954 t = 2 N = 3000 n = 300 m = 21
Определим границы доли группы работников с размером зарплаты больше 600 по следующей формуле.
ошибка пределы
%
С вероятностью 0,954 в 954 случаях из 1000 выборок доля работников имеющих наивысшую квалификацию генеральной совокупности находится в пределах от [4; 10]% и только в 46 случаях он может выйти за эти пределы.
8 билет:
Дата добавления: 2015-07-20; просмотров: 62 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Задача 1 | | | Решение |