Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Активная передняя риноманометрия

Читайте также:
  1. Активная безопасность
  2. АКТИВНАЯ БЕЗОПАСНОСТЬ ПРИ ПРЕОДОЛЕНИИ НЕРОВНОСТЕЙ
  3. Активная лексика будущего врача
  4. Активная лексика будущего врача
  5. Активная лексика будущего врача
  6. Активная лексика будущего врача
  7. Активная лексика будущего врача

Риноманометрия представляет собой измерение давления, возникающего при прохождении воздуха через полость носа.

Активная передняя риноманометрия является на­иболее распространенным методом диагностики нарушения носового дыхания.

Для понимания риноманометрии необходимо иметь представление о механизмах вентиляции в полости носа. Они основаны на законах динамики потока. Для обеспечения достаточного контакта между воздухом и слизистой оболочкой носа во вре­мя дыхания необходимо:

- низкое сопротивление потоку воздуха,

- значительная поверхность контакта,

- распределение потока по всей поверхности,

- узкие каналы потока,

- сбалансированный турбулентный режим.

В течение нормального цикла носового дыхания один носовой ход находится в «рабочей фазе», в то время как противоположный — в «фазе отдыха», что способствует восстановлению слизистой оболочки.

В возникновении назальной обструкции важную роль играет не только сопротивление носовой по* лости, но и возникновение турбулентности.

Для понимания механизма формирования тур­булентности в полости носа были проведены экс­периментальные исследования динамики потока с помощью анатомически точных моделей, которые изготавливались на основе гипсового слепка носа, выполненного под общим обезболиванием путем заполнения полости носа легко извлекаемой сили­коновой массой. Данные модели обрабатывались водой и визуализировались линии воздушного по­тока по следам красителя.

В полости носа возникает как ламинарный (с чет­кой границей между водой и красителем), так и турбулентный поток (со смазанными красителем и водой).

Чистый ламинарный поток обнаруживают при очень низкой скорости потока. При скорости пото­ка около 20 см/с могут наблюдаться первые призна­ки турбулентности. По мере увеличения скорости потока турбулентность возрастает, а ламинарный поток снижается («точка перехода»). При скорости около 500 см/с (возможны индивидуальные разли­чия: 400 — 100 см/с) наблюдается чистый турбулен­тный поток. Турбулентность является необходимым условием для обмена между воздухом и слизистой оболочкой, что важно для дыхательной функции и обоняния.

Экспериментальное изучение динамики потока показали, что полость носа может быть разделена на три зоны: область входа, функциональная зона и об­ласть выхода.

По направлению вдоха зона входа включает пред­дверие носа и передний отдел полости носа. Вог­нутое внутрь узкое внутреннее устье располагается между преддверием и передним отделом носовой полости.

Функциональная зона включает область носовых раковин и имеет форму щелевидного пространства.

Область выхода включает задний отдел полости носа, хоаны и носоглотку. За счет выходного отвер­стая эффект ламинарного потока в полости носа наблюдается на уровне преддверия и внутреннего уха. Изогнутая форма преддверия предопределяет распределение вдыхаемого воздуха из нижнелатеральных отделов в область носовых раковин. Важное значение имеет правильное соотношение преддверия полости носа При этом носогубной угол составляет 90-100˚.

Преддверие, ротированное книзу (носогубной угол < 90 градусов) направляет воздушный поток в верхнюю часть полости носа, не вентилируя ниж­нюю часть.

Преддверие, ротированное кверху (носогубной угол > 100 градусов) направляет воздух в нижнюю часть полости носа. Вогнутая форма внутреннего ус­тья обеспечивает расхождение воздушных потоков,

что способствует распределению воздуха по всей поверхности функциональной зоны. В переднем от­деле полости носа возрастает площадь поперечного сечения, что формирует турбулентность. При боль­шем увеличении плошали поперечного сечения тур­булентность воздушного потока возрастает.

Изменения при возрастании площади поперечно­го сечения и формировании турбулентности, могут быть вызваны повреждениями воспаленной пеще­ристой ткани, расположенной в области носовой пе­регородки и вершины нижней носовой раковины.

Для обеспечения дыхательной функции необхо­димым сбалансированный турбулентный режим, обеспечивающий достаточный контакт частиц воз­духа со слизистой оболочкой.

Вихреподобное вращение, возникающее в рас­ширенных областях в щелевидном пространстве («мертвые пространства») и турбулентный поток приводят к сухости слизистой оболочки, увеличе­нию осаждения частиц и формированию корок.

При вдохе воздух покидает функциональную зону, проходя дистальную часть носовой полости (снижение турбулентности), хоаны (выпуклые от­верстия — схождение воздушных потоков) и носог­лотку (изогнутый отдел — распределение воздушно­го потока в нижние дыхательные пути).

Носоглотка направляет воздух из нижних отделов в область функциональной зоны (область носовых раковин).

В этой фазе дыхания согретый и увлажненный воз­дух возвращает температуру и влажность слизистой оболочке. Поэтому контакт со слизистой оболочкой является обязательным условием. Во время выдоха передний отдел носовой полости функционирует в ка­честве распылителя, уменьшая турбулентность. Внут­реннее соустье приводит к конвергенции воздушных потоков, а преддверие направляет воздух книзу Таким образом, выдыхаемый воздух покидает полость носа в виде узкого потока с высокой скоростью.

Для проведения измерения параметров аэроди­намики носового потока возможно использование компьютерного риноманометра Rhinomanometer PC 300 (ATMOS, Германия) (рис. 13.5). Компьютерная программа позволяет получить параметры респи­раторного объема потока, проходящего через пра­вую и левую половины носа, суммарный объемный поток, величину сопротивления носовых пру щур для правой и левой половины носа и общее носовое сопротивление(суммарное сопротивление). Резуль­таты представляются в международной системе СИ.



(давление — Паскаль, объемный поток — кубические см в секунду, сопротивление — Паскаль/кубический см в секунду). Для клинического анализа более це­лесообразным является изучение суммируемых для обеих половин носа значений — суммарный объем­ный поток и суммарное сопротивление.

Метод признан классическим для определения вентиляционной функции носа. Им определяется носовое сопротивление на основе количественно­го измерения носового воздушного потока и давле­ния, используя принцип прохождения воздуха через трубку только при наличии разницы давления — из области высокого давления в область низкого дав­ления. Эта разность давления создается респиратор­ным усилием, т.е. дыханием, изменяющим давление в носоглоточном пространстве по отношению к вне­шнему атмосферному давлению, что вызывает про­хождение воздушного потока через носовую полость. Скорость воздушного потока определяется градиен­том давления, диаметром и длиной трубки (носовой полости), характеристиками потока — ламинарного или турбулентного. Воздушный поток, проходящий через полость носа, однозначно не является ни тур­булентным, ни ламинарным, и поскольку, отноше­ние давления к потоку изменяется в зависимости от скорости потока, на графике соотношения давление — поток, выбирается определенная точка, для кото­рой сопротивление выражается формулой R=Δp\B при постоянном давлении 150 Па.


Дата добавления: 2015-07-26; просмотров: 124 | Нарушение авторских прав


Читайте в этой же книге: Прогноз позиции резцов нижней челюсти после окончания лечения | Методика работы | Определение положения первых моляров. | Оценка положения окклюзионной плоскости | Оценка типа роста челюстей | Верхний и нижний гониальные углы Jarabak. | Эволюция рентгенограммы кисти руки. | Глава 12 Применение компьютерных технологий на кафедре ортодонтии и детского протезирования МГМСУ. | Лечебная работа кафедры. | Учебная работа кафедры |
<== предыдущая страница | следующая страница ==>
Компьютерное оптико-топогра­фическое обследование осанки| Графическое изображение

mybiblioteka.su - 2015-2025 год. (0.006 сек.)