Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Контрольные задания

Читайте также:
  1. I. Задания для самостоятельной работы
  2. I. Задания для самостоятельной работы
  3. I. Задания для самостоятельной работы
  4. VI. Контрольные материалы
  5. VII. ЗАДАНИЯ НА САМОСТОЯТЕЛЬНУЮ РАБОТУ
  6. А) типовые задания
  7. А. ЗАДАНИЯ К КОНТРОЛЬНОЙ РАБОТЕ

 

Подберите коэффициенты методом электронного баланса в уравнениях реакций, укажите окислитель и восстановитель.

 

1. K2MnO4 + H2O = KMnO4 +MnO2 +KOH

2. PbS + H2O2 = PbSO4 + H2O

3. NaBrO3 +NaBr + H2SO4 = Br2 + Na2SO4 + H2O

4. CuI +H2SO4 +KMnO4 = CuSO4 + I2 +MnSO4 +K2SO4 +H2O

5. CaH2+ H2O = Ca(OH)2 + H2

6. Na3[Cr(OH)6] + NaOH +PbO2 = Na2CrO4 +H2O + Na2[ Pb(OH)4]

7. Cr(NO3)3 = Cr2O3 + NO2 + O2

8. Fe2O3 + KNO3 + KOH = K2FeO4 + KNO2 +H2O

9. Cr2O3 + Na2CO3 + O2 = Na2CrO4 + CO2

10. Na2SO3 = Na2S + Na2SO4

11. Cr2O3 + NaNO3 + NaOH = Na2CrO4 + NaNO2 + H2O

12. K2Cr2O7 +H2S + H2SO4 = Cr2(SO4)3 + S + K2SO4 + H2O

13. Br2 + SO2 + H2O = HBr + H2SO4

14. H2S + H2SO3 = S + H2O

15. KMnO4 + NaNO2 + H2O = MnO2 + NaNO3 + KOH

16. NaBr + NaBrO3 + H2SO4 = Na2SO4 + Br2 + H2O

17. As + Cl2 + H2O = H3AsO4 + HCl

18. K2Cr2O7 + HBr = Br2 + CrBr3 + KBr + H2O

19. KClO3 + HCl = KCl + Cl2 + H2O

20. FeCl2 + KClO3 + HCl = FeCl3 + KCl + H2O

21. Cr2(SO4)3 + H2O2 + NaOH = Na2CrO4 + Na2SO4 + H2O

22. Mg + HNO3 = Mg(NO3)2 + N2 + H2O

23. KMnO4 + H2S + H2SO4 = MnSO4 + S + K2SO4 + H2O

24. Zn + H2SO4 = H2S + ZnSO4 + H2O

25. KMnO4 + H3PO3 + H2SO4 = MnSO4 + H3PO4 + K2SO4 + H2O

 

Лабораторная работа № 10

ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫЕ РЕАКЦИИ

Цель работы – ознакомление с окислительно-восстановительными свойствами металлов, неметаллов и их соединений, освоение методики составления уравнений окислительно-восстановительных процессов.

 

1. ТЕОРЕТИЧЕСКОЕ ВВЕДЕНИЕ

 

Окислительно-восстановительными реакциями называются реакции, сопровождающиеся изменением степени окисления атомов, входящих в состав реагирующих веществ.

Степень окисления – это условный заряд атома в молекуле, вычисленный исходя из предположения, что молекула состоит только из ионов.

Не стоит путать понятия - степень окисления и валентность. Валентность определяет число связей, образованных данным атомом. Поэтому валентность не имеет знака. Степень окисления (С.О.) может быть положительной, нулевой и отрицательной.

При определении степени окисления атомов в соединении, необходимо учитывать следующее:

1. Водород в подавляющем большинстве соединений (за исключением гидридов металлов NaH, KH, CaH2 - она равна -1 и т.д.) проявляет степень окисления +1.

2. Кислород во всех соединения (за исключением пероксидов H2O2, BaO2 и др. – она равна -1, и фторида кислорода OF2 – она равна +2) обладает степенью окисления -2.

3. Степень окисления атомов в простом веществе равна нулю: Ho2, O o2, Feo, Zno и др.

4. При подсчете степеней окисления атомов необходимо учитывать, что алгебраическая сумма всех степеней окисления в электронейтральной молекуле равна нулю. Например, подсчитаем степень окисления серы в серной кислоте H2SO4. Сначала поставим известные нам степени окисления водорода и кислорода H2SO-24. Обозначив степень окисления серы через х, составим уравнение:

(+1) * 2 + х + (-2) * 4 = 0, отсюда х = -2 + 8 = +6.

Следовательно, степень окисления серы в серной кислоте равна +6. Алгебраическая сумма степеней окисления атомов в ионе равняется заряду иона. Например, определим степень окисления серы в сульфат-ионе SO2-4:

х + (-2) * 4 = -2; х = -2 + 8 = +6.

Окислением называется процесс отдачи электронов атомом или ионом, при этом степень окисления повышается. Вещество, атомы или ионы которого в процессе реакции отдают электроны, называется восстановителем.

Восстановлением называется процесс присоединения электронов атомом или ионом, при этом степень окисления понижается. Вещество, атомы или ионы которого в процессе реакции принимают электроны, называется окислителем.

В зависимости от степени окисления атомы являются окислителями или восстановителями. Только окислительными свойствами обладают атомы, имеющие в соединениях высшую степень окисления. Эти атомы существуют в виде элементарных ионов (H+, Hg+2, Zn+2 и т.д.) и входят в состав сложных ионов: S6+ - в виде SO2-4, N+5 в ионе NO-3, Mn +7 – в ионе MnO-4 и др. Из простых веществ только окислительными свойствами обладают F и O, атомы которых имеют наивысшую электроотрицательность. Только восстановительными свойствами обладают ионы типа (Сl- , Br-, I-, Se-2, Te-2), а также атомы с низшей степенью окисления, входящие в состав более сложных группировок (N-3 в NH-3, O2- в H2O, S-2 в H2S и др.). Атомы, находящиеся в промежуточной степени окисления, могут выступать как в роли окислителей, так и восстановителей: N+3 – в HNO22; N+22 – в NO; N+ - в N2O; No – в N2; N-3 – в NH4OH; S+4 – в SO2; S+2 – в SO; So – в S2.

Наиболее распространенные окислители и восстановители рекомендуется запомнить. Окислители: галогены, KMnO4, K2MnO4, K2Cr2O7, O2, O3, H2O2, H2SO4 (конц.), HNO3, Ag2O, PbO2, ионы Au+3, Ag+, гипохлориты, хлораты царская водка, электрический ток на аноде.

Восстановители: металлы, водород, углерод, СО, H2S, SO2, H2SO3, HI, HBr, HCl, SnCl2, FeSO4, MnSO4, NH3, NO, альдегиды, спирты муравьиная и щавелевая кислота, глюкоза, электрический ток на катоде.

Составление уравнений окислительно-восстановительных реакций производится методом электронного баланса и методом полуреакций (ионно-электронный метод). Обычно различают три типа ОВР: межмолекулярные, внутримолекулярные и самоокисления-самовосстановления (диспропорционирования).

Молекулярные ОВР – реакции, в которых элемент-окислитель и элемент-восстановитель находятся в разных веществах. Внутримолекулярные ОВР – реакции, в которых элемент-окислитель и элемент-восстановитель находятся в молекуле одного вещества. В реакциях диспропорционирования молекулы одного и того же вещества реагируют друг с другом как окислитель и как восстановитель.

В ОВР необходимо учитывать роль среды. Например: ион MnO4- в кислой среде восстанавливается до Mn+2 (бесцветный раствор), в нейтральной среде – до MnO2 (бурый осадок), а в щелочной – до MnO-24 (зеленый осадок).

Мерой окислительно-восстановительной способности веществ служат их окислительно-восстановительные потенциалы. Чем больше алгебраическая величина стандартного окислительно-восстановительного потенциала данного атома или иона, тем больше его восстановительные свойства.

Для определения направления окислительно-восстановительной реакции необходимо найти ЭДС гальванического элемента, образованного из данного окислителя и восстановителя. ЭДС (Е) окислительно-восстановительного элемента равна:

Е = φок. – φвосст.

где φок . – потенциал окислителя

φвосст . – потенциал восстановителя

Если Е > 0, то данная реакция возможна. Для выяснения возможности использования К2Сr2О7 в качестве окислителя определим ЭДС следующих гальванических элементов:

F2 F Cr2O-27 Cr+3; E = 1,36 - 2,85 = -1,49 В Е < 0

Cl2 Cl- CrO-27 Cr+3 ; E = 1,36 - 1,36 = 0 В Е = 0

Br2 Br- Сr2O-27 Cr+3 ; E = 1,36 - 1,07 = 0,29 В Е > 0

I2 I Сr2O-27 Cr+3; E = 1, 36 – 0,53 = 0,83 В Е > 0

 

Дихромат калия может быть использован в качестве окислителя только для процессов:

2Brֿ - 2eˉ = Br2; 2Iֿ - 2eˉ = I2

ПРИМЕР 1.

Исходя из степени окисления (n) азота, серы и марганца в соединениях NH3, HNO2, HNO3, H2S, H2SO3, H2SO4, MnO2, KMnO4, определите, какие из них могут быть только восстановителями, только окислителями и какие проявляют как окислительные, так и восстановительные свойства.

Решение: Степень окисления n в указанных соединениях соответственно равна: -3 (низшая), +3(промежуточная), +5 (высшая): n (S) соответственно равна: -2 (низшая), +4 (промежуточная), +6 (высшая); n (Mn) соответственно равна: +4 (промежуточная), +7 (высшая). Отсюда: NH3, H2S – только восстановители; HNO3, H2SO4, KMnO4 - только окислители; HNO3, H2SO3, MnO2 – окислители и восстановители.

ПРИМЕР 2.

Могут ли происходить окислительно-восстановительные реакции между следующими веществами: а) H2S и HI; б) H2S и H2SO3; в) H2SO3 и HСlO4?

Решение: а) степень окисления в H2S n (S) = -2; в HI n (1) = 1. Так как и сера, и йод находятся в своей низшей степени окисления, то оба взятые вещества проявляют только восстановительные свойства и взаимодействовать друг с другом не могут;

б) в H2S n (S) = -2 (низшая); в H2SO3 n (S) = +4 (промежуточная). Следовательно, взаимодействие этих веществ возможно, причем H2SO3 является окислителем;

в) в H2SO3 n (S) = +4 (промежуточная); в HСlO4 n (Сl) = +7 (высшая). Взятые вещества могут взаимодействовать. H2SO3 в этом случае будет проявлять восстановительные свойства.

ПРИМЕР 3.

Составьте уравнения окислительно-восстановительных реакций, идущих по схеме:

H2S + KMnO4 + H2SO4 ⇄ S + MnSO4 + K2SO4 + H2O

Решение. Применим метод электронного баланса. Он основан на сравнении степеней окисления атомов в исходных и конечных веществах. В основе метода лежит правило: число электронов, отданных восстановителем, должно равняться числу электронов, присоединенных окислителем, следовательно, в первую очередь определяем изменение степеней окисления атомов до и реакции в написанной схеме.

H2S-2+ KMn+7O4 + H2SO4 ⇄ S0 + Mn+2SO4 + K2SO4 + H2O


Дата добавления: 2015-07-18; просмотров: 165 | Нарушение авторских прав


Читайте в этой же книге: Степень окисления элементов и сущность окислительно-восстановительных явлений | Метод электронного баланса | Особые случаи составления уравнений окислительно-восстановительных реакций | Классификация окислительно-восстановительных реакций | ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ |
<== предыдущая страница | следующая страница ==>
ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ| Далее составляем электронные уравнения

mybiblioteka.su - 2015-2025 год. (0.01 сек.)